
Dirk Praetorius, Wintersemester 2017/18
Michele Ruggeri 23./24.11.2017

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 5

Aufgabe 5.1. Let x be a finite sequence of numbers (dynamic array of type int) and n ∈ Z some
given bound. Write a function y=cut(x,n) that removes all entries x(j) of x with x(j) ≥ n, i.e., y is a
shortened (reallocated) x. Further, write a main program which reads in the vector x and the bound n.
How did you check your code for correctness? Save your source code as cut.c into the directory serie05.

Aufgabe 5.2. Write a function double* dec2bin(int N, int* n), which, given a natural number
0 ≤ N < 65535, computes and returns its representation in the binary numeral system. The program
has to determine the coefficients ai ∈ {0, 1}, i = 0, . . . , n − 1, such that N =

∑n−1
i=0 ai2

i (n ≤ 16). The
binary representation of N should be returned without leading zeros. The function ‘returns’ also the
length of the dynamical vector. For instance, for N = 77, the function returns the vector 1 0 0 1 1 0

1. Moreover, write a main program, which reads N from the keyboard and prints to the screen its binary
representation. How did you test the correctness of your code? Save your source code as dec2bin.c into
the directory serie05.

Aufgabe 5.3. A well-known root-finding algorithm is the Newton method. Let f : [a, b]→ R. Given an
initial guess x0, define the sequence (xn)n∈N via

xn = xn−1 − f(xn−1)/f ′(xn−1) for n ≥ 1.

Implement the algorithm in a function double newton(double (*fct)(double), double (*fctprime)(double),

double x0, double tau), which, given x0 and a tolerance τ > 0, performs the Newton iteration until

|f ′(xn)| ≤ τ

or

|f(xn)| ≤ τ and |xn − xn−1| ≤

{
τ for |xn| ≤ τ,
τ |xn| else.

In the first case, print a warning to inform that the result is presumably wrong. The function returns the
value xn of the approximate root. Use assert to check whether τ > 0 holds. The function gets function
pointers of double f(double x) and its derivative double fprime(double x). Write a main program,
which reads x0 and τ from the keyboard and prints xn to the screen. How can you test your code? What
are good examples? What is the connection between the Newton method and Exercise 4.8 from the last
exercise sheet? Save your source code as newton.c into the directory serie05.

Aufgabe 5.4. Given a differentiable function f : [a, b] → R and x ∈ [a, b], the derivative f ′(x) can be
approximated by the different quotient

Φ(h) :=
f(x+ h)− f(x)

h
for h > 0.

Write a function double* diff(double (*fct)(double), double x, double h0, double tau, int*

n), which computes the sequence Φ(hn), where hn := 2−nh0, until

|Φ(hn)− Φ(hn+1)| ≤

{
τ if |Φ(hn)| ≤ τ, or

τ |Φ(hn)| else.

The function gets the function double f(double x) via function pointer and returns the vector of the
complete sequence (Φ(h0), . . . ,Φ(hn)), as well as the length of the vector. Then, write a main program
containing suitable examples to test your implementation. How did you test the correctness of your code?
Save your source code as diff.c into the directory serie05.



Aufgabe 5.5. The Aitken ∆2-method is an acceleration method for sequences. For an injective sequence
(xn)n∈N with limn→∞ xn = x, define the sequence

yn := xn −
(xn+1 − xn)2

xn+2 − 2xn+1 + xn
.

Under appropriate assumptions on the sequence (xn)n∈N, it holds that

lim
n→∞

yn − x
xn − x

= 0,

i.e., the sequence (yn)n∈N converges towards x faster than (xn)n∈N. Write a function double* aitken(double*

x, int n), which, given a vector x ∈ Rn with length n ≥ 3, computes the vector y ∈ Rn−2. Use assert

to ensure that n ≥ 3. Test your implementation with suitable examples. Write a main program, which
reads the vector x and the length n from the keyboard and prints the vector y to the screen. What
happens for the sequence xn = qn with 0 < q < 1? Save your source code as aitken.c into the directory
serie05.

Aufgabe 5.6. Combine the Aitken method of Exercise 5.5 with the difference quotient Φ(h) from
Exercise 5.4. With hn := 2−nh0, we consider the sequence xn := Φ(hn) and obtain the sequence (yn).
Write a function double diffaitken(double (*fct)(double),double x, double h0, double tau)

that receives the function f , the evaluation point x, the step size h0 > 0 as well as the tolerance τ > 0
and returns yn+1 ≈ f ′(x) as soon as there holds that

|yn − yn+1| ≤

{
τ, falls |yn+1| ≤ τ,
τ |yn+1|, anderenfalls.

The function shall work for arbitrary real-valued functions double f(double x). In each step, display
hn+1, |yn+1 − yn| and yn+1 on the screen. Save the source code speichere in serie05. As example,
consider the calculation of e = exp(1) = exp′(1) and ε = 10−12. Compare the number of iterations with
and without (i.e., yn = xn) Aiken method. How and with what functions did you test your code? Save
your source code as diffaitken.c into the directory serie05.

Aufgabe 5.7. Write a recursive function void mergesort(double* x, int n) which sorts a vector
x ∈ Rn in ascending order using the mergesort algorithm. Use the following strategy:

• If n ≤ 2, then the vector x ∈ Rn is explicitly sorted.

• If n > 2, then the vector x is split into two subvectors y and z of half length. Then the function
mergesort is recursively called for y and z. Finally, y and z are merged into a sorted vector. Use
explicitly the fact, that y and z are already sorted at that moment.

Write a main program, which reads the vector x and its length n from the keyboard, sorts it with
mergesort and prints to the screen the sorted vector. Test your program accurately! What is the com-
putational cost of your function? Save your source code as mergesort.c into the directory serie05.

Aufgabe 5.8. Implement the mergesort algorithm from Exercise 5.7 without allocating additional vec-
tors in the recursion step. Instead, use pointer arithmetic: If x is the base-pointer of the array x (i.e.
the pointer to x0), then x+k is the base-pointer of xk. Hence for the recursion step, it is sufficient, to
simply have the base-pointer to x0, the starting index k and the ending index ` of a part of x as input
parameters. For the sorted final array you can uniquely allocate dynamic memory at the beginning. No
additional memory is needed. How did you test the correctness of your code? Save your source code as
mergesort2.c into the directory serie05.


