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Consider a functional F : U → R where U ⊂ X and X is a linear space over R. If
u0 ∈ U , ξ ∈ X and ε0 > 0 are such that {u0 + εξ | |ε| < ε0 } ⊂ U , then the function

φ : (−ε0, ε0)→ R , ε 7→ φ(ε) := F(u0 + εξ) ,

is welldefined.

Definition 1. If φ′(0) exists, then δF(u0, ξ) := φ′(0) is called the first variation of F at
u0 in direction of ξ.

Remark 2. The “variation” is a “weak” derivative concept, which does not need a topol-
ogy on X.

Definition 3. Let X be a Banach-space and X ′ its topological dual space. Let F :
U → R be a functional for some open set U ⊂ X and u0 ∈ U .

(i) The functional F is called Gâteaux differentiable at u0 if there exists l ∈ X ′

(depending on u0) such that

lim
ε→0

∣∣∣∣F(u0 + εξ)−F(u0)− εl(ξ)
ε

∣∣∣∣ = 0 for all ξ ∈ X .

In this case dF(u0, ·) = l is called the Gâteaux derivative of F at u0.

(ii) The functional F is called Fréchet differentiable at u0 if there exists l ∈ X ′

(depending on u0) such that

lim
ξ→0

|F(u0 + ξ)−F(u0)− l(ξ)|
‖ξ‖

= 0 for all ξ ∈ X .

In this case DF(u0, ·) = l is called the Fréchet derivative of F at u0.

Exercise 1. Let X be a Banach-space and X ′ be its topological dual space. Consider
the functional F : U → R on some open subset U ⊂ X and u0 ∈ U . Show that

(i) F Fréchet differentiable at u0 ⇒ F Gâteaux differentiable at u0 ⇒ First vari-
ation of F exists in all directions ξ.

(ii) F Fréchet differentiable at u0 ⇒

DF(u0, ξ) = dF(u0, ξ) = δF(u0, ξ) for all ξ ∈ X .

(iii) How are Gâteaux derivative resp. Fréchet derivative called in a finite-dimensional
Banach-space X?



Exercise 2. Let X := H2(Rn
x × Rt). Consider the functionals

(i) E1 : X → R, u 7→ E1(u) :=
∫
Rnx×Rt

−1
2
u2
t+

1
2
|∇u|2+F (u) d(x, t), where F ∈ C1(R;R)

and F : X → L1(Rn
x × Rt).

(ii) E2 : X → R, u 7→ E2(u) :=
∫
Rnx×Rt

1
2
Im(utū) + 1

2
|∇u|2 + F (u) d(x, t), where F ∈

C1(C;R), F : X → L1(Rn
x × Rt), and ū is the complex-conjugate of u.

Compute the first variation and the Gâteaux derivative of E1 and E2.

Exercise 3. Consider the evolution group T0(s) := eis∆, s ∈ R, for the free Schrödinger
equation on L2(Rn) with

T0(s)u0 :=

{
u0 for s = 0 ,

u(x, t) =
∫
Rn u0(ξ) 1

(4πit)n/2
e

i|x−ξ|2
4t dξ for s 6= 0 , x ∈ Rn .

Show that all operators T0(s), s ∈ R, are unitary.

Exercise 4. Show that xu+ 3tu2 is a conserved quantity for the KdV equation

ut = 6uux − uxxx .

Solutions will be discussed on Wednesday 12th of June 2017.


