ÜBUNGEN ZU "NICHTLIN. PART. DIFFERENTIALGLEICHUNGEN" BLATT 2 (22.3.2018)

ANITA GERSTENMAYER

Aufgabe 1. Seien X, Y und Z Banachräume mit stetigen Einbettungen $X \hookrightarrow Y \hookrightarrow Z$. Es existieren C > 0 und $0 < \theta < 1$, so dass für alle $u \in X$ gilt:

$$||u||_Y \le C||u||_X^{1-\theta}||u||_Z^{\theta}.$$

Sei ferner $(u_k)\subset X$ beschränkt und $u_k\to u$ in Z für $k\to\infty.$ Zeige:

- (i) $u_k \to u$ in Y.
- (ii) Wenn $X \hookrightarrow Z$ kompakt ist, dann ist auch $X \hookrightarrow Y$ kompakt.

Aufgabe 2. Seien X und Y Banachräume und $A: X \to Y$ ein linearer stetiger Operator. Zeige, dass A schwach folgenstetig ist, d.h. es gilt

$$x_k \rightharpoonup x$$
 in $X \Rightarrow A(x_k) \rightharpoonup A(x)$ in Y .

Aufgabe 3. Seien $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet, $1 \leq p < \infty$, (u_k) eine Folge mit $u_k \to u$ in $L^p(\Omega)$ für $k \to \infty$ und $f \in C^0(\mathbb{R})$. Sei (u_k) beschränkt in $L^\infty(\Omega)$ oder $f \in L^\infty(\mathbb{R})$. Zeige: $f(u_k) \to f(u)$ in $L^p(\Omega)$.

Aufgabe 4. Seien $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^1$, $F \in C^1(\mathbb{R})$ mit $F' \in L^{\infty}(\mathbb{R})$ und $u \in W^{1,p}(\Omega)$, $1 \leq p < \infty$. Zeige, dass $F \circ u \in W^{1,p}(\Omega)$ und

$$\nabla(F \circ u) = F'(u)\nabla u.$$

Aufgabe 5. Seien $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^1$, $L(u) = -\text{div}(A(x)\nabla u)$ ein elliptischer Differentialoperator mit beschränkter Matrix $A, g \in H^1(\Omega)$ und f(x,u) eine Carathéodory-Funktion, so dass $f(\cdot,0) \in L^2(\Omega)$. Ferner sei $f(x,\cdot)$ lipschitzstetig im Sinne von

$$|f(x,u) - f(x,v)| \le f_0|u-v|$$
 für $x \in \Omega$, $u, v \in \mathbb{R}$,

wobei $f_0 > 0$. Zeige, dass unter einer Kleinheitsannahme an f_0 (die zu bestimmen ist) höchstens eine schwache Lösung des Randwertproblems

$$L(u) = f(x, u)$$
 in Ω , $u = g$ auf $\partial \Omega$

existieren kann.

anita.gerstenmayer@tuwien.ac.at.