Übungen zu Fana1 SS11, 5. Übung

1. Sei $p \in (1, +\infty)$ und betrachte den Banachraum $X = \ell^p(\mathbb{N})$. Weiters sei a_1, a_2, \ldots eine Folge komplexer Zahlen mit der Eigenschaft, dass für alle $(x_n)_{n \in \mathbb{N}} \in \ell^p(\mathbb{N})$ die Reihe

$$\sum_{n=1}^{\infty} a_n x_n$$

in $\mathbb C$ konvergiert. Weisen Sie nach, dass dann $(a_n)_{n\in\mathbb N}\in\ell^q(\mathbb N)$ mit $\frac1p+\frac1q=1$.

Hinweis: Betrachte die Folge $(a_1, 0, ...), (a_1, a_2, 0, ...), ...$ in $\ell^q(\mathbb{N})$ und identifiziere $\ell^q(\mathbb{N})$ mit X'!

2. Sei (X_i, \mathcal{T}_i) , $i \in I$ eine Familie von topologischen Vektorräumen. Sei $X = \prod_{i \in I} X_i$ versehen mit der Produkttopologie \mathcal{T} und $\pi_i : X \to X_i$ sei die Projektion auf die i-te Komponente.

Man zeige, dass $(X, \mathcal{T})'$ genau die linearen Funktionale der Bauart $f = \sum_{j=1}^m f_{i_j} \circ \pi_{i_j}$ mit $i_1, \ldots, i_m \in I$ und $f_{i_j} \in (X_i, \mathcal{T}_i)'$ sind.

Hinweis: Zu $f \in X'$ betrachte $f_i := f \circ \iota_i$, wobei $\iota_i : X_i \to X$ mit $y \mapsto (x_j)_{j \in I}$, wobei $x_i = y$ und $x_j = 0$ für $j \neq i$. Man leite aus der Beschränktheit von f auf einer Nullumgebung her, dass es endlich viele $i_1, \ldots, i_m \in I$ gibt, sodass f auf $\ker \pi_{i_1} \cap \cdots \cap \ker \pi_{i_m}$ den Wert Null annimmt. Man leite daraus die Beziehung $f = \sum_{j=1}^m f_{i_j} \circ \pi_{i_j}$ her!

3. Sei $(X, \|.\|)$ ein normierter nicht vollständiger Raum und $(\hat{X}, \|.\|)$ eine Vervollständigung davon mit oBdA. $X \subseteq \hat{X}$.

Man zeige, dass $f \mapsto f|_X$ ein isometrischer Isomorphismus von $(\hat{X})'$ auf X' ist.

Man zeige $\sigma((\hat{X})', \hat{X}) \supseteq \sigma((\hat{X})', X)$ auf $(\hat{X})'$ und $(B, \sigma((\hat{X})', \hat{X})|_B) = (B, \sigma((\hat{X})', X)|_B)$, wobei $B \subseteq (\hat{X})'$ die abgeschlossene Einheitskugel ist.

- 4. Sei *X* ein normierter Raum. Man zeige, dass jede in *X* schwach konvergente Folge (!!) bezüglich der Norm auf *X* beschränkt ist!
- 5. Man zeige: Jeder Banachraum X ist isometrisch isomorph zu einem abgeschlossenen Teilraum eines Raumes der Form C(K), wobei K ein gewisser (von X abhängiger) kompakter Hausdorffraum ist.

Hinweis: $\iota: X \to X''$ und Banach-Alaoglu.

6. Ein normierter Raum X heißt reflexiv, wenn $\iota(X) = X''$.

Zeigen Sie zunächst, dass jeder reflexive normierte Raum vollständig ist!

Für einen normierten Raum X zeige man die Äquivalenz folgender Aussagen:

- (i) X ist reflexiv;
- (ii) Die abgeschlossene Einheitskugel B_X von X ist w-kompakt, d.h. kompakt bezüglich $\sigma(X, X')$.

Hinweis: Proposition 5.4.2!

7. (a) Man zeige: Jeder Hilbertraum ist reflexiv.

- (b) Man zeige: Sei H ein Hilbertraum und $x_n, n \in \mathbb{N}$, eine Folge in H. Dann gilt $x_n \stackrel{w}{\to} x$, d.h. bezüglich der schwachen Topologie, genau dann, wenn für jedes $y \in H$ gilt $(x_n, y) \to (x, y)$.
- (c) Finde im Hilbertraum $\ell^2(\mathbb{N})$ eine Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n \stackrel{w}{\to} 0$, $||x_n|| = 1$. Konvergiert dann $(x_n)_{n\in\mathbb{N}}$ auch bzgl. der Norm gegen 0?
- 8. Sei $p \in (1, +\infty)$ und betrachte den Banachraum $\ell^p(\mathbb{N})$.

Betrachte die Abbildung $T:(x_n)_{n\in\mathbb{N}}\mapsto (x_{n+1})_{n\in\mathbb{N}}$ für $(x_n)_{n\in\mathbb{N}}\in\ell^p(\mathbb{N})$. Zeigen Sie, dass T eine beschränkte lineare Abbildung von $\ell^p(\mathbb{N})$ nach $\ell^p(\mathbb{N})$ ist.

Weiters bestimme man die konjugierte Abbildung zu T als Operator auf $\ell^q(\mathbb{N})$ mit $\frac{1}{p}+\frac{1}{q}=1$, wenn man $(\ell^p(\mathbb{N}))'$ mit $\ell^q(\mathbb{N})$ identifiziert.