Übung zu Funktionalanalysis 1

2.Übung (11.4.2014)

11. Sei $(X, (., .)_X)$ ein linearer Raum mit positiv definitem Skalarprodukt, und $(\iota, (H, (., .)_H))$ eine Hilbertraumvervollständigung von X. Bezeichne $\iota^*: H^* \to X^*$ die zu ι duale Abbildung. Zeige, dass

$$X' = \{ \iota^* ((., y)_H) : y \in H \}.$$

12. Sei $(X, \|.\|)$ ein normierter Raum, und erfülle $\|.\|$ die Parallelogrammregel. Zeige, dass es ein Skalarprodukt gibt welches die Norm $\|.\|$ induziert.

Hinweis: Definiere eine Abbildung $(.,.): X \times X \to \mathbb{C}$ so wie man es machen muss, und zeige schrittweise

- $-(x,x) = ||x||^2, x \in X, \text{ und } (x,y) = \overline{(y,x)}, x,y \in X;$
- $-(x+y,z) = 2(x,z/2) + 2(y,z/2), x,y,z \in X;$
- $-(x+y,z)=(x,z)+(y,z), x,y,z\in X, \text{ und } (\lambda x,y)=\lambda(x,y), x,y\in X, \lambda\in\mathbb{C}.$
- 13. Betrachte den Raum $\mathbb{C}_n[z]$ aller Polynome mit komplexen Koeffizienten mit Grad höchstens n. Zeige, dass $(p,q) := \int_{-1}^1 p(t)\overline{q(t)}\,dt$ ein positiv definites Skalarprodukt auf $\mathbb{C}_n[z]$ ist, und dass $(\mathbb{C}_n[z],(.,.))$ ein Hilbertraum ist. Zeige, dass es zu jedem $w\in\mathbb{C}$ und $l\in\mathbb{N}_0$ ein eindeutiges Element $K_{w:l}\in\mathbb{C}_n[z]$ gibt, sodas

$$p^{(l)}(w) = \int_{-1}^{1} p(x) \overline{K_{w;l}(x)} \, dx, \quad p \in \mathbb{C}_n[z].$$

- 14. Betrachte wieder den Raum $\mathbb{C}_n[z]$ aller Polynome mit komplexen Koeffizienten mit Grad höchstens n versehen mit dem Skalarprodukt $(p,q) := \int_{-1}^{1} p(t)\overline{q(t)} dt$, und sei $K_{w;l}$ jenes Element mit $p^{(l)}(w) = (p, K_{w;l}), p \in \mathbb{C}_n[z]$. Zeige, dass $K_{w;0}(z) = \overline{K_{z;0}(w)}, z, w \in \mathbb{C}$, und $K_{w;1} = K'_{w;0}, w \in \mathbb{C}$.
- 15. Sei $n \in \mathbb{N}$, und sei

$$K := \{ p \in \mathbb{C}_n[z] : p \text{ hat reelle Koeffizienten}, \ p''(x+2) \ge p'(x-2), x \in [0,1], \}.$$

Zeige, dass es zu jeder Funktion $f \in L^2([-1,1])$ genau ein Polynom $p_0 \in K$ gibt, sodass

$$\int_{-1}^{1} |f(t) - p_0(t)|^2 dt \le \int_{-1}^{1} |f(t) - p(t)|^2 dt, \quad p \in K.$$

Hinweis: Zeige dass K abgeschlossen und konvex ist.

16. Sei μ das normierte Lebesguemaß $d\mu=\frac{1}{2\pi}dx$. Betrachte die Elemente bzw. Teilräume im $L^2([0,2\pi),\mu)$ die definert sind als

$$e_n(t) := e^{int}, \ n \in \mathbb{Z}, \qquad u_n(t) := \frac{e_{-n}(t) + ne_n(t)}{\sqrt{1 + n^2}}, \ n \in \mathbb{N},$$

$$M := \overline{\text{span}\{e_n : n = 0, 1, 2, ...\}}, \quad N := \overline{\text{span}\{u_n : n = 1, 2, ...\}}.$$

Zeige die folgenden Aussagen.

- (a) Die Räume M und N sind, versehen mit dem $L^2(\mu)$ -Skalarprodukt, Hilberträume. Die Mengen $\{e_n: n=0,1,2,\ldots\}$ bzw. $\{u_n: n=1,2,\ldots\}$ sind Orthonormalbasen von M bzw. N.
- (b) $M \cap N = \{0\}.$
- (c) M + N ist dicht in $L^2([0, 2\pi), \mu)$, aber nicht gleich ganz $L^2([0, 2\pi), \mu)$.
- (d) Die Projektion des normierten Raumes X := M + N mit Bild M und Kern N ist nicht stetig.

- 17. Führe das Gram-Schmidtsche Orthonormalisierungsverfahren im Raum $L^2(-1,1)$ ausgehend von der Folge $(x^n)_{n=0}^{\infty}$ durch. Zeige, dass das entstehende Orthonormalsystem $(b_n)_{n=0}^{\infty}$ eine Orthonormalbasis ist, und gegeben ist als $b_n = \sqrt{n+\frac{1}{2}}P_n$ wobei P_n das n-te Legendre Polynom ist.
- 18. Sei μ das normierte Lebesguemaß $d\mu = \frac{1}{2\pi}dx$, sei A eine nichtleere Teilmenge von \mathbb{Z} , und setze

$$H(A) := \Big\{ f \in L^2([0,2\pi),\mu) : \int_0^{2\pi} f(x)e^{-inx} \, dx = 0, n \in A \Big\}.$$

Zeige, dass H(A) ein abgeschlossener Teilraum von $L^2(0, 2\pi)$ ist, und finde eine Orthonormalbasis des Hilbertraumes H(A).

Bestimme das orthogonale Komplement von H(A), und finde eine explizite Formel für die orthogonale Projektion von $L^2([0, 2\pi), \mu)$ auf H(A).

- 19. Ein Hilbertraum heißt H separabel, wenn er eine abzählbare und dichte Teilmenge besitzt. Zeige, dass für einen Hilbertraum H die folgenden Aussagen äquivalent sind:
 - (i) H ist separabel.
 - (ii) H hat eine eine höchstens abzählbare Orthonormalbasis.
 - (iii) Es gibt eine höchstens abzählbare Teilmenge N von H sodass die lineare Hülle span N dicht in H ist.
- 20. Sei $(H, (\cdot, \cdot)_H)$ ein Hilbertraum, und $[\cdot, \cdot]$ ein weiteres Skalarpodukt auf H. Sei vorausgesetzt dass $[\cdot, \cdot]$ eine stetige koerzive Sesquilinearform ist, d.h., dass (hier bezeichnet $\|\cdot\|_H$ die von $(\cdot, \cdot)_H$ induzierte Norm)

$$\exists C > 0 \,\forall x, y \in H: \ |[x, y]| \le C \|x\|_H \|y\|_H, \qquad \exists m > 0 \,\forall x \in H: \ [x, x] \ge m \|x\|_H^2.$$

Weiters bezeichne G den Gram-Operator der Sesquilinearform $[\cdot,\cdot]$ bzgl. $(\cdot,\cdot)_H$.

Zeige, dass es einen eindeutigen Operator $T \in \mathcal{B}(H)$ gibt, sodass $GT = TG = \mathrm{id}_H$ gilt.

Hinweis: Zeige, dass $(H, [\cdot, \cdot])$ ein Hilbertraum ist.