Projekt 1

Aufgabe 1.1. Überlegen Sie sich einen adaptiven Algorithmus, der, basierend auf einer hp-Quadratur, Integrale der Gestalt

$$Qf := \int_{a}^{b} f \, dx$$

numerisch berechnet. Formulieren Sie diesen Algorithmus als Pseudo-Code und implementieren Sie ihn in Matlab.

Aufgabe 1.2. Überlegen Sie sich mindestens zwei geeignete Testfälle und vergleichen Sie Ihr Programm mit einer uniformen h-Methode und einer p-Methode. Visualisieren Sie die Vergleiche geeignet. Was ist die geeignete Bezugsgröße auf der x-Achse?

Aufgabe 1.3. Basierend auf der Duffy-Transformation und uniformer Netzverfeinerung kann man Quadraturformeln entwickeln, die für ein nicht-entartetes Dreieck $T \subset \mathbb{R}^2$ das Integral

$$Qf := \int_T f \, dx$$

approximieren. Es sei $p \in \mathbb{N}$ der 1D Quadraturgrad. Welche Konvergenzordnung $|Qf - Q_h f| = \mathcal{O}(h^{\alpha})$ erwarten Sie für glattes f in diesem Fall (Beweisidee!)?

Aufgabe 1.4. Entwickeln Sie, basierend auf Duffy-Transformation und Rot-Verfeinerung, eine adaptive hp-Quadratur, die für ein nicht-entartetes Dreieck $T \subset \mathbb{R}^2$ ein Integral der Gestalt

$$Qf := \int_T f \, dx$$

berechnet. Formulieren Sie diesen Algorithmus als Pseudo-Code und implementieren Sie ihn in MATLAB.

Aufgabe 1.5. Überlegen Sie sich mindestens zwei geeignete Testfälle und vergleichen Sie Ihr Programm mit einer uniformen h-Methode (d.h. iterierter Rot-Verfeinerung) und einer p-Methode. Visualisieren Sie die Vergleiche geeignet.

Projekt 2

Aufgabe 2.1. Betrachten Sie das Neumann-Problem

$$-\Delta u = f \quad \text{in } \Omega,$$
$$\partial_n u = \phi \quad \text{auf } \Gamma.$$

Beachten Sie, dass die Lösung nur bis auf eine additive Konstante eindeutig ist, die z.B. durch die Zusatzforderung $\int_{\Omega} u \, dx = 0$ fixiert werden kann. Zeigen Sie, dass die schwache Formulierung

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx + \int_{\Gamma} \phi v \, ds \quad \text{für alle } v \in H^{1}(\Omega)$$

genau dann eine eindeutige Lösung $u \in H^1_*(\Omega) := \{v \in H^1(\Omega) \mid \int_{\Omega} v \, dx = 0\}$ besitzt, wenn die Daten $\int_{\Omega} f \, dx + \int_{\Gamma} \phi \, ds = 0$ erfüllen.

Aufgabe 2.2. Welche Konvergenzordnung erwarten Sie für die P1-FEM mit $\mathcal{S}^1_*(\mathcal{T}_h) := \{v_h \in \mathcal{S}^1(\mathcal{T}_h) \mid \int_{\Omega} v_h \, dx = 0\}$ (Beweis!)?

Aufgabe 2.3. Implementieren Sie die P1-FEM für $\mathcal{S}^1_*(\mathcal{T}_h)$, wobei Sie die Nebenbedingung explizit ins Gleichungssystem einbauen, d.h. ihr Gleichungssystem hat die Form

$$\begin{pmatrix} A & c \\ c^T & 0 \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

Dabei sind A und b die Galerkin-Daten bezüglich $\mathcal{S}^1(\mathcal{T}_h)$. Was ist der Vektor $c \in \mathbb{R}^N$? Beweisen Sie, dass dieses Gleichungssystem tatsächlich äquivalent zur Galerkin-Formulierung für $\mathcal{S}^1_*(\mathcal{T}_h)$ ist.

Aufgabe 2.4. Implementieren Sie die P1-FEM für $S_z^1(\mathcal{T}_h) := \{v_h \in S^1(\mathcal{T}_h) \mid v_h(z) = 0\}$, wobei z ein beliebiger Knoten von \mathcal{T}_h ist. Was ist eine geeignete Basis dieses Raums? Wie ist der Zusammenhang zur vorausgegangenen Aufgabe? Welchen Vorteil hat die Galerkin-Matrix dieses Verfahrens im Vergleich zum vorherigen Galerkin-System?

Aufgabe 2.5. Visualisieren Sie die Konditionszahlen der diskreten Systeme für beide P1-FEM Verfahren. Was beobachten Sie? Wie erklären Sie sich das?

Aufgabe 2.6. Verifizieren Sie Ihr Ergebnis aus Aufgabe 2.2 numerisch anhand eines geeignet gewählten Beispiels.

Projekt 3

Betrachten Sie die P1-FEM für das 2D Modellproblem

$$-\Delta u = f \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial n} = \phi \quad \text{auf } \Gamma_N,$$

$$u = 0 \quad \text{auf } \Gamma_D$$

mit gemischten Dirichlet-Neumann-Randbedingungen und $\overline{\Gamma}_D \cup \overline{\Gamma}_N = \Gamma$, $\Gamma_D \cap \Gamma_N = 0$ sowie $|\Gamma_D| > 0$.

Aufgabe 3.1. Implementieren Sie einen adaptiven Algorithmus, basierend auf dem (h-h/2)-Fehlerschätzer $\eta_h := \|u_{h/2} - u_h\|_{H^1(\Omega)}$.

Aufgabe 3.2. Implementieren Sie einen adaptiven Algorithmus, basierend auf dem (h-h/2)artigen Fehlerschätzer $\widetilde{\eta}_h := \|u_{h/2} - I_h u_{h/2}\|_{H^1(\Omega)}$ mit dem nodalen Interpolationsoperators I_h .

Aufgabe 3.3. Beweisen Sie mit Hilfe eines Skalierungsarguments, dass die Abschätzung

$$C^{-1} \eta_h \le \widetilde{\eta}_h \le C \eta_h$$

mit einer Konstante C > 0 gilt, die nur von der Formregularität $\sigma(\mathcal{T}_h)$ abhängt. Beweisen Sie dazu, dass die lokalen Beiträge von $\widetilde{\eta}_h$ sogar

$$\widetilde{\eta}_h(T) \le C \left(\min_{v_h \in \mathcal{S}^1(\mathcal{T}_h)} \|u_{h/2} - v_h\|_{L^2(T)} + \min_{v_h \in \mathcal{S}^1(\mathcal{T}_h)} \|\nabla (u_{h/2} - v_h)\|_{L^2(T)} \right)$$

für alle $T \in \mathcal{T}_h$ erfüllen.

Aufgabe 3.4. Ist der L^2 -Anteil in den Fehlerschätzern η_h und $\widetilde{\eta}_h$ wesentlich, oder reicht es, wenn man statt $\|\cdot\|_{H^1(\Omega)}$ die H^1 -Seminorm $\|\nabla(\cdot)\|_{L^2(\Omega)}$ betrachtet?

Aufgabe 3.5. Visualisieren Sie auf mindestens drei verschiedenen Geometrien das Konvergenzverhalten von η_h und $\tilde{\eta}_h$ für uniforme, η_h -adaptive und $\tilde{\eta}_h$ -adaptive Verfeinerung. Wie kann man im Plot die vorausgegangene Abschätzung empirisch verifizieren?

Projekt 4

Betrachten Sie die P1-FEM für das 2D Modellproblem

$$-\Delta u = f \quad \text{in } \Omega,$$
$$u = u_D \quad \text{auf } \Gamma$$

mit inhomogenen Dirichlet-Randbedingungen $u_D: \Gamma \to \mathbb{R}$.

Aufgabe 4.1. Stellen Sie eine diskrete Formulierung in $\mathcal{S}^1(\mathcal{T})$ des Modellproblems auf (\mathcal{P}^1 -FEM). Approximieren Sie dazu $u_D \approx u_{Dh} \in \mathcal{S}^1(\mathcal{T}_{\Gamma})$ und führen Sie das Problem auf ein homogenes Randwertproblem zurück. \mathcal{T}_{Γ} bezeichnet hier die Einschränkung von \mathcal{T} auf den Rand Γ.

Aufgabe 4.2. Für die Netzverfeinerung im Inneren sind in der Simulation Glättungsschätzer weit verbreitet. Dabei betrachtet man die lokalen Beiträge von

$$\eta_h = \min_{q_h \in \mathcal{S}^1(\mathcal{T}_h)^2} \|\nabla u_h - q_h\|_{L^2(\Omega)}$$

zur Markierung. Implementieren Sie eine Funktion, die die lokalen Beiträge von η_h zurückgibt.

Aufgabe 4.3. Der Schätzer η_h aus der vorausgegangenen Aufgabe benötigt die Berechnung der L^2 -Orthogonalprojektion. Alternativ kann man ∇u_h durch Postprocessing glätten, z.B.

$$\widetilde{\eta}_h = \|\nabla u_h - J_h(\nabla u_h)\|_{L^2(\Omega)}$$

mit dem Clément-Operator $J_h:L^2(\Omega)^2\to\mathcal{S}^1(\mathcal{T}_h)^2,$ der knotenweise durch

$$J_h q(z) = \frac{1}{|\omega_z|} \int_{\omega_z} q \, dx \quad \text{für } z \in \mathcal{K}_h$$

definiert ist. Dabei bezeichnet $\omega_z := \{x \in T \mid T \in \mathcal{T}_h \text{ mit } z \in T\}$ den Patch von $z \in \mathcal{K}_h$. Implementieren Sie eine Funktion, die die lokalen Beiträge von $\widetilde{\eta}_h$ zurückgibt.

Aufgabe 4.4. Die Glättungsschätzer sehen üblicherweise nicht die Approximation der Dirichlet-Daten u_D . Diese kann bei nodaler Interpolation am Rand durch

$$\operatorname{osc}_h := \|h^{1/2} (u_D - u_{Dh})'\|_{L^2(\Gamma)}$$

kontrolliert werden. Dabei bezeichnet $(\cdot)'$ die Ableitung nach der Bogenlänge. Welche Ordnung osc $_h = \mathcal{O}(h^{\alpha})$ erwarten Sie für glattes u_D bestenfalls? Entwickeln Sie eine geeignete Quadraturformel, sodass das mittels Quadratur berechnete $\widetilde{\text{osc}}_h$ auf

$$|\operatorname{osc}_h - \widetilde{\operatorname{osc}}_h| = \mathcal{O}(h^{\beta})$$

mit $\beta>\alpha$ führt, d.h. der Quadraturfehler ist von höherer Ordnung.

Aufgabe 4.5. Implementieren Sie einen adaptiven Algorithmus, der das Netz, basierend auf η_h (bzw. $\tilde{\eta}_h$) und geeignet kombiniert mit μ_h , verfeinert.

Aufgabe 4.6. Visualisieren Sie für uniforme und adaptive Netzverfeinerung die Größen η_h , $\widetilde{\eta}_h$ und μ_h . Welche Konvergenzordnungen beobachten Sie?

Projekt 5

Aufgabe 5.1. Betrachten Sie die P2-FEM für das 2D Modellproblem

$$-\Delta u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{auf } \Gamma,$$

d.h. wir approximieren $u \approx u_h \in \mathcal{S}_0^2(\mathcal{T}_h) := \mathcal{P}^2(\mathcal{T}_h) \cap C(\Omega)$. Gilt $\mathcal{S}_0^2(\mathcal{T}_h) \subset H_0^1(\mathcal{T}_h)$ (Beweis!)?

Aufgabe 5.2. Welche Dimension hat $\mathcal{P}^2(T)$ für ein nicht-entartetes Dreieck $T \subset \mathbb{R}^2$? Geben Sie für das Referenzdreieck $T = \text{conv}\{(0,0),(1,0),(0,1)\}$ geeignete Basisfunktionen an. Begründen Sie, warum diese geeignet sind!

Aufgabe 5.3. Implementieren Sie die P2-FEM für das Modellproblem in MATLAB.

Aufgabe 5.4. Welche Konvergenzrate ist maximal mit P2-FEM erreichbar? Unter welchen Regularitätsannahmen wird sie garantiert? (Beweisidee!)

Aufgabe 5.5. Verifizieren Sie Ihre Aussage aus der vorausgegangenen Aufgabe anhand eines geeignet gewählten Beispiels numerisch.

Aufgabe 5.6. Implementieren Sie, basierend auf dem (h-h/2)-Fehlerschätzer einen adaptiven Algorithmus.

Aufgabe 5.7. Vergleichen und visualisieren Sie für mindestens drei verschiedene Geometrien das Konvergenzverhalten von $||u - u_h||_{H^1(\Omega)}$ für uniforme und adaptive Netzverfeinerung.

Projekt 6

Aufgabe 6.1. Implementieren Sie die P1-FEM für das 2D Reaktions-Diffusionsmodell

$$-\varepsilon \Delta u + u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{auf } \Gamma,$$

mit einem Parameter $\varepsilon > 0$.

Aufgabe 6.2. Leiten Sie die schwache Form des Modellproblems her und zeigen Sie, dass diese eine eindeutige Lösung $u \in H_0^1(\Omega)$ hat.

Aufgabe 6.3. Welche Konvergenzrate erwarten Sie für die P1-FEM maximal (Beweisidee!)? Beweisen Sie, dass diese Konvergenzrate im Allgemeinen nicht verbesserbar ist.

Aufgabe 6.4. Verifizieren Sie Ihre Aussage aus der vorausgegangenen Aufgabe anhand eines geeignet gewählten numerischen Experiments.

Aufgabe 6.5. Vergleichen und visualiseren Sie das Konvergenzverhalten $||u - u_h||_{H^1(\Omega)}$ für f = 1 auf verschiedenen Geometrien und für $\varepsilon \in \{10, 1, 1/10, 1/100, 1/1000\}$. Was beobachten Sie?

Aufgabe 6.6. Welches Verhalten erwarten Sie im Fall $\varepsilon \to 0$?

Aufgabe 6.7. Was ist die geeignete Energienorm $|\!|\!| \cdot |\!|\!|$ für das Modellproblem? Implementieren Sie, basierend auf dem (h-h/2)-Schätzer η_h , eine adaptive Netzverfeinerungsstrategie, wobei Sie für η_h verschiedene Normen verwenden — zumindest $|\!|\!| \cdot |\!|\!|_{H^1(\Omega)}$, $|\!|\!| \nabla(\cdot) |\!|\!|_{L^2(\Omega)}$ und Energienorm.

Aufgabe 6.8. Vergleichen und visualisieren Sie für mindestens zwei verschiedene Geometrien das Konvergenzverhalten $||u - u_h||$ für uniforme und adaptive Netzverfeinerung, basierend auf den verschiedenen η_h -Schätzern. Was beobachten Sie?