Übungen zur Vorlesung Einführung in Scientific Computing

Serie 10

Aufgabe 10.1. Sei $T_{\text{ref}} \subseteq \mathbb{R}^2$ das abgeschossene Referenzdreieck mit den Eckpunkten (0,0), (1,0), $(0,1) \in \mathbb{R}^2$. Die Duffy-Transformation

$$\Psi: [0,1]^2 \to T_{\text{ref}}, (s,t) \mapsto (s, (1-s)t)$$

bildet das Einheitsquadrat $[0,1]^2$ auf $T_{\rm ref}$ ab. Beweisen Sie, dass $\Psi:(0,1)^2\to T_{\rm ref}^\circ$ ein Diffeomorphismus ist, d.h. bijektiv und sowohl Ψ als Ψ^{-1} sind stetig differenzierbar $(T_{\rm ref}^\circ)$ bezeichnet dabei das offene Dreieck mit den Eckpunkten $(0,0),(1,0),(0,1)\in\mathbb{R}^2$). Überlegen Sie wie der Rand $\partial[0,1]^2$ abgebildet wird

Aufgabe 10.2. Schreiben Sie eine Funktion gauss_dreieck welche eine gegebene Funktion $f:T\to\mathbb{R}$ über ein gegebenes Dreieck $T\subseteq\mathbb{R}^2$ integriert (überlegen Sie sich eine praktisches Datenformat um ein Dreieck zu speichern). Gehen Sie dazu wie folgt vor: Bestimmen Sie zuerst eine affine Funktion $\Phi_T:T_{\mathrm{ref}}\to T$, welche das Referenzdreieck bijektiv auf T abbildet. Die Funktion hat die Form $\Phi_T(x)=Ax+b$, wobei $A\in\mathbb{R}^{2\times 2}$ und $b\in\mathbb{R}^2$ ein beliebiger Eckpunkt von T ist. Verwenden Sie nun die Duffy-Transformation um eine bijektive Abbildung $\Phi_T\circ\Psi$ von $(0,1)^2$ auf das Innere von T zu erhalten. Zeigen Sie, dass $\Phi_T\circ\Psi$ auch ein Diffeomorphismus ist. Für das Einheitsquadrat verwenden Sie nun eine gewöhnliche Tensor-Gaussquadratur der Ordnung $n\in\mathbb{N}$. Das heißt, Sie verwenden die Gausspunkte und Gewichte (x_i,w_i) der Ordnung $n\in\mathbb{N}$ für das Interval [0,1] und approximieren

$$\int_{[0,1]^2} g(x,y) \, d(x,y) = \int_0^1 \int_0^1 g(x,y) \, dx \, dy \approx \int_0^1 \sum_{i=0}^n g(x_i,y) w_i \, dy \approx \sum_{j=0}^n \sum_{i=0}^n g(x_i,x_j) w_i w_j,$$

für eine beliebige Funktion $g:[0,1]^2\to\mathbb{R}.$

Aufgabe 10.3. Ein Polynom in \mathbb{R}^2 ist eine Linearkombination aus Monomen der Form

$$x^{\alpha_x}y^{\alpha_y}$$
 für einen Multiindex $\alpha = (\alpha_x, \alpha_y) \in \mathbb{N}_0^2$.

Wir bezeichnen $\max\{\alpha_x, \alpha_y\}$ als partiellen Grad und $\alpha_x + \alpha_y$ als totalen Grad des Monoms. Welchen Exaktheitsgrad (partiell oder total) hat Ihre Funktion gauss_dreieck für gegebene Ordnung $n \in \mathbb{N}$?

Aufgabe 10.4. Testen Sie Ihre Funktion gauss_dreieck für verschiedene Ordnungen $n \in \mathbb{N}$ auf einer uniformen Triangulierung \mathcal{T} des Einheitsquadrats [0,1] mit maximalem Dreiecksdurchmesser h (Es gibt hier zahlreiche Möglichkeiten). Dabei soll eine summierte Gaussquadratur angewendet werden, also

$$\int_{[0,1]^2} f \, dx \approx \sum_{T \in \mathcal{T}} Q_T(f),$$

wobei $Q_T(\cdot)$ die Funktion gauss_dreieck bezeichnet. Welches Konvergenzverhalten des Quadraturfehlers beobachten Sie in Abhängigkeit von h und von n?