Übung zu Analysis 3 (WS 2014/15)

2.Übung (20.10.2014)

10. Betrachte die reellen Zahlen als topologischen Raum mit der von der Betragsmetrik d(x,y) := |x-y| induzierten Topologie. Setze

$$I := \{(n, m) \in \mathbb{N} \times \mathbb{N} : n > m\},\,$$

und definiere für $i = (n, m), j = (k, l) \in I$

$$i \preceq j \quad :\Longleftrightarrow \quad \frac{1}{2^n} + \frac{1}{2^m} \geq \frac{1}{2^k} + \frac{1}{2^l}$$

Zeige:

- (a) (I, \preceq) ist eine gerichtete Menge.
- (b) Setze

$$x_i := \frac{1}{2^n} + \frac{1}{2^m}, \quad i = (n, m) \in I.$$

Dann konvergiert das Netz $(x_i)_{i \in I}$ gegen 0.

(c) Ist $\sigma: \mathbb{N} \to I$ eine Bijektion, so setze

$$X_s := x_{\sigma(s)}, \quad s \in \mathbb{N}$$
.

Die Folge $(X_s)_{s\in\mathbb{N}}$ ist nicht konvergent.

(d) Finde eine Umgebungsbasis $\mathcal{V}(0)$ des Punktes 0, sodass es eine Bijektion $\tau:I\to\mathcal{V}(0)$ gibt mit

$$i \leq j \iff \tau(i) \supseteq \tau(j)$$

Man sagt ein topologischer Raum erfüllt das Trennungsaxiom (T1), wenn es zu je zwei verschiedenen Punkten $x, y \in X$ offene Mengen O_x und O_y gibt sodass

$$x \in O_x, \ y \notin O_x, \quad y \in O_y, \ x \notin O_y.$$

Im Gegensatz zur Trennungseigenschaft Hausdorff zu sein wird hier also nicht verlangt, dass O_x und O_y disjunkt gewählt werden können. Offenbar erfüllt jeder Hausdorff-Raum sicher auch (T1).

11. Bezeichne mit \mathcal{E} die euklidische Topologie auf \mathbb{R} , und setze

$$\mathcal{T} := \{ O \subseteq \mathbb{R} : \mathbb{R} \setminus O \text{ kompakt in } (\mathbb{R}, \mathcal{E}) \} \cup \{\emptyset\}.$$

- (a) Zeige, dass \mathcal{T} eine Topologie ist und dass $(\mathbb{R}, \mathcal{T})$ das Trennungsaxiom (T1) erfüllt, aber nicht Hausdorff ist.
- (b) Sei $K := [0, \infty)$. Zeige, dass K in $(\mathbb{R}, \mathcal{T})$ kompakt ist und bestimme den Abschluss von K in $(\mathbb{R}, \mathcal{T})$.
- (c) Finde eine Folge $(x_n)_{n\in\mathbb{N}}$ die (in der Topologie \mathcal{T}) gegen jeden Punkt aus \mathbb{R} konvergiert.

Sei X eine Menge, sei \leq eine Ordnungsrelation auf X, und schreibe wie üblich $x \prec y$ wenn $x \leq y$ aber $x \neq y$. Betrachte die Teilmenge S von P(X) die aus allen "offenen Halbstrahlen" besteht, d.h.

$$\mathcal{S} := \{ (\bot, b) : b \in X \} \cup \{ (a, \top) : a \in X \}$$

wobei

$$(\bot, b) := \{x \in X : x \prec b\}, (a, \top) := \{x \in X : a \prec x\}$$

Die eindeutige Topologie \mathcal{T} welche \mathcal{S} als Subbasis hat heisst die *Ordnungstopologie* auf X.

12. Betrachte die Menge \mathbb{R} der reellen Zahlen. Diese trägt die natürliche Ordnungsrelation \leq . Bezeichne mit \mathcal{T} die Ordnungstopologie auf (\mathbb{R} , \leq), und mit \mathcal{E} die euklidische Topologie auf \mathbb{R} (also die von der euklidischen Metrik d(x,y) := |x-y| induzierte). Gilt eine (oder keine oder beide) der Inklusionen $\mathcal{T} \subseteq \mathcal{E}$ bzw. $\mathcal{E} \subseteq \mathcal{T}$?

Beantworte die selbe Frage für die Ordnungstopologie \mathcal{T}_2 die auf \mathbb{R}^2 von der lexikographischen Ordnung induziert wird und die euklidische Topologie \mathcal{E}_2 des \mathbb{R}^2 .

13. Wähle eine Wohlordnung \leq auf der Menge \mathbb{R}_{∞} mit der Eigenschaft dass ∞ das größte Element bzgl. \leq ist (um so eine Ordnung zu erhalten wählt man zuerst eine Wohlordnung auf \mathbb{R} und definiert dann $x \leq \infty$, $x \in \mathbb{R}_{\infty}$). Bezeichne mit Ω die Menge aller $\lambda \in \mathbb{R}_{\infty}$ für die $\{x \in \mathbb{R}_{\infty} : x < \lambda\}$ höchstens abzählbar ist, und bezeichne mit $\Omega + 1$ das kleinste Element der Menge $\mathbb{R} \setminus \Omega$. Begründe, dass ein solches Element existiert.

Sei nun \mathbb{R}_{∞} mit der Ordnungstopologie von \leq versehen. Zeige, dass es keine Folge $(x_n)_{n\in\mathbb{N}}, x_n\in\Omega$, mit $\lim_{n\to\infty}x_n=\Omega+1$ gibt.

Hinweis: Überlege, dass das Supremum einer abzählbaren Menge von Elementen aus Ω existiert und wieder in Ω liegt.

- 14. Wir verwenden die gleichen Bezeichnungen wie in der vorigen Aufgabe.
 - (a) Zeige, dass der Abschluß von Ω gleich $\Omega \cup \{\Omega + 1\}$ ist.
 - (b) Finde ein Netz $(x_i)_{i \in I}$, $x_i \in \Omega$, mit $\lim_{i \in I} x_i = \Omega + 1$.
- 15. Sei (X, \preceq) eine wohlgeordnete Menge, und sei vorausgesetzt dass X ein größtes Element besitzt. Sei \mathcal{T} die Ordnungstopologie auf (X, \preceq) . Zeige, dass (X, \mathcal{T}) kompakt ist. Hinweis: Angenommen man hat eine Überdeckung durch offene Intervalle die keine endliche Teilüber-

Hinweis: Angenommen man hat eine Uberdeckung durch offene Intervalle die keine endliche Teilüberdeckung hat. Dann konstruiere eine Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_{n+1} \prec x_n$, $n\in\mathbb{N}$, und folgere einen Widerspruch.

- 16. Sei (X, \mathcal{T}) ein topologischer Raum.
 - (a) Sei $\mathcal{B} \subseteq \mathcal{T}$. Zeige, dass \mathcal{B} genau dann eine Basis von \mathcal{T} ist wenn für jedes $x \in X$ die Menge

$$\mathcal{V}_{\mathcal{B}}(x) := \big\{ B \in \mathcal{B} : x \in B \big\}$$

eine Filterbasis des Umgebungsfilters $\mathcal{U}(x)$ ist.

(b) Sei $(x_i)_{i\in I}$ ein Netz in X und $x\in X$. Weiters sei $\mathcal{V}(x)$ eine Umgebungsbasis des Punktes x. Dann gilt $\lim_{i\in I} x_i = x$ genau dann, wenn

$$\forall V \in \mathcal{V}(x) \ \exists i_0 \in I \ \forall i \in I, i \geq i_0 : \quad x_i \in V$$

- (c) Sei (Y, \mathcal{O}) ein weiterer topologische Raum und sei $f: X \to Y$. Weiters sei \mathcal{S} eine Subbasis von \mathcal{O} . Zeige, dass f genau dann stetig ist, wenn $f^{-1}(V) \in \mathcal{T}$ für alle $V \in \mathcal{S}$.
- 17. Sei (X, \mathcal{T}) ein topologischer Raum, sei \mathcal{B} eine Basis von \mathcal{T} und sei $A \subseteq X$. Zeige, dass A genau dann dicht in X ist wenn für jede nichtleere Menge $O \in \mathcal{B}$ gilt dass $A \cap O \neq \emptyset$.

Gilt diese Aussage immer noch, wenn man anstelle von " \mathcal{B} Basis von \mathcal{T} " nur verlangt dass \mathcal{B} eine Subbasis von \mathcal{T} ist?

[§]Wenn nicht explizit etwas anderes gesagt wird, sind in Hinweisen angegebenen Aussagen zu beweisen (falls sie verwendet werden und falls sie nicht ohnehin Sätze aus Vorlesung oder Übung sind).