Übung zu Analysis 3 (WS 2014/15)

5. Übung (10.11.2014)

37. Sei (I, \preceq) eine gerichtete Menge und $(f_i)_{i \in I}$ ein monoton wachsendes Netz bestehend aus von unten halbstetigen¹ Funktionen $f_i : [0, 1] \to [0, 1]$. Zeige, dass

$$\int_{[0,1]} \lim_{i \in I} f_i(x) \, d\lambda(x) = \lim_{i \in I} \int_{[0,1]} f_i(x) \, d\lambda(x) \,.$$

Hinweis: Man verwende (ohne Beweis), dass für jede nichtnegative messbare Funktion f auf [0,1] gilt

$$\int_{[0,1]} f(t) d\lambda(t) = \sup_{\substack{g \text{ stetig} \\ 0 \le g \le f}} \int_{[0,1]} g(t) d\lambda(t).$$

38. Sei μ ein endliches positives Borelmaß auf \mathbb{R} . Für $z \in \mathbb{C} \setminus \mathbb{R}$ betrachte die Funktion

$$G[d\mu](z) := \int_{\mathbb{R}} \frac{1+xz}{x-z} \, d\mu(x) \,.$$

Zeige, dass $G[d\mu]$ auf ganz $\mathbb{C} \setminus \mathbb{R}$ wohldefiniert und stetig ist. Weiters zeige, dass $\operatorname{Im} z \cdot \operatorname{Im} G[d\mu](z) \geq 0, z \in \mathbb{C} \setminus \mathbb{R}$.

- 39. Für L>0 sei $\operatorname{Lip}_L([0,1],\mathbb{R})$ die Menge aller stetigen Funktionen $f:[0,1]\to\mathbb{R}$ die Lipschitzstetig mit einer Lipschitz-Konstanten $\leq L$ sind, d.h. für die es eine Konstante $C\leq L$ gibt sodass $|f(x)-f(y)|\leq C|x-y|,\ x,y\in[0,1].$ Sei $\alpha\in\mathbb{R}$, und sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen in $\operatorname{Lip}_L([0,1],\mathbb{R})$ mit $f(0)=\alpha$. Kann man eine gleichmäßig konvergente Teilfolge $(f_{n_k})_{k\in\mathbb{N}}$ der Folge $(f_n)_{n\in\mathbb{N}}$ finden?
- 40. Ist die Teilmenge $\{\sin(nx): n \in \mathbb{N}\}\ \text{von}\ C([0,1],\mathbb{R})$ gleichgradig stetig?
- 41. Betrachte die Menge $C(\mathbb{T}, \mathbb{C})$ aller stetigen komplexwertigen Funktionen auf der Einheitskreislinie $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ versehen mit der Supremumsnorm. Zeige, dass die Menge

$$\mathcal{A} := \left\{ \sum_{l=m}^{n} a_{l} z^{l} : m, n \in \mathbb{Z}, m \leq n, a_{l} \in \mathbb{C} \right\}$$

dicht in $C(\mathbb{T}, \mathbb{C})$ ist.

42. Betrachte die Abbildung $\tau:[0,2\pi]\to\mathbb{T}$ die definiert ist als $\tau:t\mapsto e^{it}$. Zeige, dass die Abbildung

$$\Phi: \left\{ \begin{array}{ccc} C(\mathbb{T},\mathbb{C}) & \to & \{f \in C([0,2\pi],\mathbb{C}): \, f(0) = f(2\pi)\} \\ f & \mapsto & f \circ \tau \end{array} \right.$$

bijektiv ist, und dass stets $\sup_{z\in\mathbb{T}}|f(z)|=\sup_{t\in[0,2\pi]}|\Phi(f)(t)|$ gilt.

Bestimme die Menge $\Phi(A)$. Welchen Satz aus der Theorie der Fourierreihen haben wir jetzt gerade bewiesen?

43. Betrachte die Menge \mathcal{C} aller reellwertigen stetigen Funktionen auf $[0,2\pi] \times [0,2\pi]$ welche die Eigenschaft haben, dass $f(x,0)=f(x,2\pi),\ x\in[0,2\pi]$, und $f(0,y)=f(2\pi,y),\ y\in[0,2\pi]$. Weiters bezeichne mit \mathcal{TP} die Menge aller Funktionen f der Gestalt

$$f(x,y) = \sum_{l,k=0}^{N} \left(a_{l,k} \cos(lx) \cos(kx) + b_{l,k} \cos(lx) \sin(ky) + c_{l,k} \sin(lx) \cos(ky) + d_{l,k} \sin(lx) \sin(ky) \right)$$

¹Eine Funktion f heisst von unten halbstetig, wenn für jedes $\alpha \in \mathbb{R}$ die Menge $f^{-1}((\alpha, \infty))$ offen ist.

mit gewissen $N \in \mathbb{N}$ und $a_{l,k}, b_{l,k}, c_{l,k}, d_{l,k} \in \mathbb{R}$. Offensichtlich gilt $\mathcal{TP} \subseteq \mathcal{C}$.

Sei $f \in \mathcal{C}$. Zeige, dass es eine Folge von Funktionen $f_n \in \mathcal{TP}$ gibt die gleichmäßig gegen f konvergiert.

Hinweis: Führe die gleiche Argumentation wie in den vorangegangenen Aufgaben durch. Nur betrachte $C(\mathbb{T} \times \mathbb{T}, \mathbb{C})$ und eine geeignete "2-Variablen-Version" der dort verwendeten Algebra \mathcal{A} . Schliesslich verwende $\tau_2 : [0, 2\pi] \times [0, 2\pi] \to \mathbb{T} \times \mathbb{T}, \ \tau_2(t, s) := (e^{it}, e^{is}),$ und gehe zum Realteil über.

44. Sei $f:[0,1]\times[0,1]\to\mathbb{R}$ stetig, und gelte

$$\int_0^1 \int_0^1 f(x, y) x^n y^m \, dx dy = 0, \ n, m \in \mathbb{N}_0.$$

Zeige, dass f = 0 ist.

Hinweis: Approximiere f durch Polynome in zwei Variablen, und schliesse dass $\int_0^1 \int_0^1 f(x,y)^2 dx dy = 0$.

 $[\]S$ Wenn nicht explizit etwas anderes gesagt wird, sind in Hinweisen angegebenen Aussagen zu beweisen (falls sie verwendet werden und falls sie nicht ohnehin Sätze aus Vorlesung oder Übung sind).