
Winfried Auzinger Sommersemester 2014
Dirk Praetorius 26. März 2014
Michele Ruggeri

Übungen zur Vorlesung

Computermathematik

Serie 4

Aufgabe 4.1. Let f : [a, b] → R be a continuous function. For N ∈ N and xj := a+j (b−a)/N
with j = 0, . . . , N , we define the composite midpoint rule

IN :=
b− a

N

N
∑

j=1

f
(

(xj−1 + xj)/2
)

. (1)

Since IN is a Riemann sum, we know that

lim
N→∞

IN =

∫ b

a

f dx.

For f ∈ C2[a, b], one can even show that

∣

∣

∣

∫ b

a

f dx− IN

∣

∣

∣
= O(N−2).

Write a MATLAB function

int = midpointrule(a,b,f,n)

which, for the sequence N = 2k and k = 0, . . . , n , computes and returns the vector int of the
corresponding values IN .

Aufgabe 4.2. Consider the integral I :=
∫

5

0
exp(x) dx. Use the composite midpoint rule from

Aufgabe 4.1 to compute the sequence of approximate integrals IN . Use a double logarithmic
plot to show the error EN = |I − IN | as well as the error estimator δN = |I2N − IN |. Verify the
convergence behavior O(N−2). What convergence behavior do you observe, if you use Aitken’s
∆2-method? What convergence behavior do you observe if you replace the evaluation f

(

(xj−1+
xj)/2

)

at the midpoint by the evaluation f(xj−1)?

Aufgabe 4.3. The following code computes a sparse matrix A ∈ R
N×N (You can download

the code from the CompMath webpage).

function A = matrix(N)

x = rand(1,N);

y = rand(1,N);

triangles = delaunay(x,y);

n = size(triangles,1);

A = sparse(N,N);

for i = 1:n

nodes = triangles(i,:);

B = [1 1 1 ; x(nodes) ; y(nodes)];

grad = B \ [0 0 ; 1 0 ; 0 1];

A(nodes,nodes) = A(nodes,nodes) + det(B)*grad*grad’/2;

end

Plot the computational time t(N) over N and visualize the growth t(N) = O(Nα) for N =
100 ·2k and k = 0, 1, 2, What is the bottleneck of this implementation? What can be done to
improve the runtime behavior? Write an improved code which leads to a better computational
time. Visualize its runtime in the same plot to show that the improved code is really superior.
Hint: You might want to have a look at help sparse.

Aufgabe 4.4. Let m,n,N ∈ N. Let I, J, a ∈ R
N represent the coordinate format of a sparse

matrix A ∈ R
m×n, i.e., for all k = 1, . . . , N holds Aij = ak with i = Ik, j = Jk. Write a

MATLAB function

[II,JJ,AA] = naive2ccs(I,J,a,m,n)

which returns the corresponding vectors of the CCS format.

Aufgabe 4.5. Given the vectors of the CCS format of a sparse matrix A ∈ R
m×n from the

last exercise, write a MATLAB function

Ax = mvm(II,JJ,AA,m,n,x)

which computes the matrix-vector multiplication b = Ax ∈ R
m for given x ∈ R

n. The complexity
of the code must be O(N). Hint: You can verify your code as follows: Suppose that A is a sparse
matrix (e.g., the triadiagonal matrix from page 96 of the lecture notes). Then, the coordinate
format of A is obtained by [I,J,a] = find(A) in MATLAB. Use your code from Aufgabe 4.4
to compute the vectors of the CCS format and compare the outcome of your function mvm with
the matrix-vector multiplication A*x in MATLAB.

Aufgabe 4.6. Write a function plotPotential, which takes a function f : R2 → R, a domain
[a, b]2 and a step size τ > 0, and plots the projection of f(x, y) onto the 2D plane (i.e., view(2)).
Add a colorbar to the plot. For the visualization, use a tensor grid with step size τ . You
may assume, that the actual implementation of f takes matrices x, y ∈ R

M×N and returns a
matrix z ∈ R

M×N of the corresponding function values, i.e., zjk = f(xjk, yjk). Optionally, the
function plotPotential takes a parameter n ∈ N. For given n, add n (black or white) contour
lines to the figure. To verify your code, write a MATLAB script which visualizes the potential
f(x, y) = x · exp(−x2 − y2) from the lecture notes.

Aufgabe 4.7. Write a MATLAB function saveMatrix which takes a matrix A ∈ R
M×N and

writes it into an ASCII file matrix.dat via fprintf (see also help fopen). Use %1.16e for
fprintf to write the matrix coefficients! (Why does this make sense?) Optionally, the function
takes a string name and writes the matrix to the ASCII file name.dat. To verify your code, write
a MATLAB script which creates a random matrix A ∈ R

M×N and writes it to an ASCII file
A.dat. Load the matrix via B = load(’A.dat’) and check whether A and B coincide.

Aufgabe 4.8. Suppose you are given a C function with signature

double f(double x, double y);

Write a MEX-MATLAB function fct which which takes matrices X,Y ∈ R
M×N

Z = fct(X,Y)

and returns the matrix Z ∈ R
M×N with Zjk = f(Xjk, Yjk). The MEX function should check

whether the dimensions of X and Y coincide, and should throw an error if they do not. To check
your implementation, implement the function f(x, y) = x · exp(−x2 − y2) in C and reproduce
some of the plots of the last lecture.

