Serie 8

Besprechung: Woche von Montag, 13.5.2019

8.1. Sei $A \in \mathbb{R}^{n \times n}$ eine Tridiagonalmatrix der Form

$$A = \begin{pmatrix} d_1 & e_1 & & & \\ c_2 & d_2 & e_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & e_{n-1} \\ & & & c_n & d_n \end{pmatrix}$$

Es möge die reguläre Matrix A eine LU-Zerlegung haben.

a) Zeigen Sie: die Faktoren L und U haben die Form

- b) Bestimmen Sie u_1 . Geben Sie einen Algorithmus an, der die l_i und die u_i für $i=2,\ldots,n$ bestimmt.
- 8.2. An einem Quader werden die Längen der Kanten und die Umfänge senkrecht zur ersten und zweiten Kante gemessen. Die Meßwerte sind:

Kante 1: 26mm, Kante 2: 38mm, Kante 3: 55mmUmfang \perp Kante 1: 188mm, Umfang \perp Kante 2: 163mm.

Bestimmen Sie die Kantenlängen mittels der Methode der kleinsten Quadrate.

- 8.3. Die Funktion $f(x) = \sin x$ soll durch ein Polynom der Bauart $\pi(x) = a_1x + a_3x^3$ approximiert werden. Dabei sollen die Koeffizienten a_1, a_3 mittels Ausgleichsrechnung bestimmt werden, indem man $\sum_{j=0}^{m} (\pi(x_j) f(x_j))^2$ minimiert, wobei x_0, \ldots, x_m gegeben Punkte sind. Stellen Sie das Ausgleichsproblem auf. Programmieren Sie die Bestimmung der Koeffizienten a_1, a_3 für folgende Wahl der Stützstellen x_j : N zufällig ausgewählte Punkte im Intervall [-1/N, 1/N] für $N = 2^{-n}, n = 2, \ldots, 10$. Konvergieren Ihre Werte a_1, a_3 ? Welchen Grenzwert erwarten Sie?
- 8.4. Die Methode der kleinsten Fehlerquadrate ist auch zum Bestimmen von Parametern von manchen nichtlinearen Gesetzen einsetzbar. Überlegen Sie sich, wie Sie aus Meßdaten (t_i, y_i) , i = 1, ..., N die Parameter k, C aus dem Gesetz $y(t) = Ce^{-kt}$ bestimmen können. Wie können Sie bei einem Gesetz $y(t) = Ct^{\alpha}$ vorgehen, um C und α zu bestimmen?
- **8.5.** Sei **Q** eine orthogonale Matrix. Zeigen Sie:
 - a) $\mathbf{x}^{\top}\mathbf{y} = ((\mathbf{Q})\mathbf{x})^{\top}(\mathbf{Q}\mathbf{y})$ für alle $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
 - b) Sei $\mathbf{A} \in \mathbb{R}^{m \times n}$ mit m > n und ihre QR-Zerlegung $\mathbf{A} = \mathbf{QR}$. Zeigen Sie: Falls \mathbf{A} vollen Rang hat $(d.h., \operatorname{rang}(\mathbf{A}) = n)$, dann sind die Diagonalelemente von \mathbf{R} ungleich Null. Zeigen Sie, daß dann die ersten n Spalten von \mathbf{Q} eine Orthonormalbasis des Bildraums von \mathbf{A} ist.