Übungsblatt 8

Diskussion des Blattes: Fr., 16.5.2014

1. Betrachten Sie für (endlichdimensionales) V_h das ODE-System: $u_h \in C^1((0,T);V_h) \cap C^0([0,T];V_h)$:

$$(u_u'(t), v)_{L^2} + a(u_h(t), v) = (f(t), v)_{L^2} \qquad \forall v \in V_h, \qquad u_h(0) = u_h^0 \in V_h. \tag{1}$$

Machen Sie folgende Zeitdiskretisierung: Sie machen zwei Schritte des impliziten Eulerverfahrens und dann Crank-Nicholson-Schritte (immer Schrittweite k). Zeigen Sie:

$$||u_h(t_n) - u_h^n||_{L^2} \le Ck^2t_n^{-2}||u_h^0||_{L^2}$$

Hinweis: Schreibt man R_0 und R_1 für die Stabilitätsfunktionen des Eulerverfahrens und des Crank-Nicholson-Verfahrens, so muß analog zu Lemma 9.49 der VO die Abschätzung $|F_n(z)| \leq Cn^{-2}$ gezeigt werden kann, wenn man setzt:

$$F_n(z) := (R_0(-z))^2 (R_1(-z))^{n-2} - e^{-nz}.$$

Gehen Sie wie folgt vor:

- $|R_0(-z)|^2(R_1(-z))^{n-2}| \leq Cn^{-2}$ für $z \geq z_0$ für geeignetes z_0 (überlegen Sie sich, wo das Maximum dieser Funktion für geg. $n \geq 2$ (groß) ist.
- Setzen Sie $F_n(z) = R_0(-z)^2((R_1(-z))^{n-2} e^{-(n-2)z}) + ((R_0(-z))^2 e^{-2z})e^{-(n-2)z}$
- Schätzen Sie $((R_1(-z))^{n-2} e^{-(n-2)z}) \le Cn^{-2}$ für $z \le z_0$ ab.
- Schätzen Sie $(R_0(-z))^2 e^{-2z} \le Cz^2$ für $z \le z_0$ ab.
- 2. Formulieren Sie explizit das dG(1)-Verfahren. Man kann das dG(1)-Verfahren auch auf "klassische" (z.B. skalare) ODEs anwenden. Formulieren Sie dieses für die ODE $y' = \lambda y$. Was ist die Stabilitätsfunktion R von dG(1)?
- 3. Sei $V_h \subset H^1_0(\Omega)$ ein endlichdimensionaler Raum. Sei $p \in \mathbb{N}$ und \mathcal{T} ein Gitter bestehend aus dem Punkte $0 = t_0 < t_1 < \ldots, t_N = T$. Sei

$$X_h = \{ u \in C^0([0,T]; V_h) \, | \, u|_{(t_n,t_{n+1})} \text{ ein Polynom (in } t) \text{ vom Grad } p \text{ für jedes } n \},$$

$$Y_h = \{ u \in L^2((0,T); V_h) \, | \, u|_{(t_n,t_{n+1})} \text{ ein Polynom (in } t) \text{ vom Grad } p-1 \text{ für jedes } n \}.$$

Auf jeden Element $K = (t_n, t_{n+1})$ ist also z.B. $u \in X_h$ von der Form $u|_K(t) = \sum_{i=0}^p u_i t^i$, $u_i \in V_h$ Sei $\Pi : L^2((0,T); V_h) \to Y_h$ der L^2 -Projektor, d.h. für jedes (t_n, t_{n+1}) ist $(\Pi u)|_{(t_n, t_{n+1})} \in \mathcal{P}_{p-1}((t_n, t_{n+1}); V_h)$ definiert durch die Bedingungen

$$\int_{t_n}^{t_{n+1}} t^{\ell}(u - \Pi u) dt = 0, \qquad \ell = 0, \dots, p - 1, \qquad n = 0, \dots, N - 1.$$

a) Sei $b(\cdot,\cdot)$ eine beliebige Bilinearform auf $V_h\times V_h$ (z.B. $(\cdot,\cdot)_{L^2}$). Zeigen Sie:

$$\int_{t_{-}}^{t_{n+1}} b(u(t) - (\Pi u)(t), v(t)) dt = 0 \qquad \forall v \in \mathcal{P}_{p-1}((t_n, t_{n+1}); V_h).$$

b) Sei $\|\cdot\|_*$ eine beliebige Norm auf V_h (z.B. $\|\cdot\|_{L^2}$, $\|\cdot\|_{V'}$ mit $V=H_0^1(\Omega)$). Dann gilt:

$$\int_0^T \|\Pi u(t)\|_*^2 dt \le C \int_0^T \|u(t)\|_*^2 dt, \qquad u \in L^2((0,T); V_h),$$

wobei die Konstante nur von p und $\|\cdot\|_*$ abhängt.

4. (das "continuous Galerkin-Verfahren", "cG(p)"). Sei V_h , X_h , Y_h wie in Aufg. 3. Wir betrachten eine Diskretisierung von (1) mit $u_h^0 = 0$. Das Verfahren ist: finde $u_p \in X_h$ mit $u_p(0) = 0$ so daß

$$\int_0^T (u_p'(t), v(t))_{L^2} + a(u_p(t), v(t)) dt = \int_0^T (f(t), v(t))_{L^2} dt \qquad \forall v \in Y_h.$$

- a) Zeigen Sie, daß das numerische Verfahren eine eindeutige Lösung hat. Zeigen Sie, daß es ein "Zeitschrittverfahren" ist in dem Sinn, daß die Approximation u_p elementweise berechnet werden kann: erst auf (t_0, t_1) , dann auf (t_1, t_2) etc.
- b) Tatsächlich entstehen RK-artige Verfahren. Welches Verfahren erhalten Sie im einfachsten Fall p=1, wenn Sie zusätzlich annehmen, daß f eine (in der Zeit) stückweise lineare Funktion ist.
- c) (Stabilität I) Zeigen Sie für u_p eine Abschätzung der Form

$$\int_0^{t_n} \|u_p'(t)\|_{L^2(\Omega)}^2 dt + \|u_p(t_n)\|_{H^1(\Omega)}^2 \le C \int_0^{t_n} \|f(t)\|_{L^2}^2 dt, \qquad n = 0, \dots, N.$$

d) (Stabilität II) Sei $\Pi: L^2((0,T); V_h) \to Y_h$ der L^2 -Projektor aus Aufg. 3. Zeigen Sie, daß die Approximation u_p ebenfalls folgende Gleichung erfüllt:

$$\int_0^T (u_p'(t), v(t))_{L^2} + a(\Pi u_p(t), v(t)) dt = \int_0^T (f(t), v(t))_{L^2} \quad \forall v \in Y_h.$$

Überlegen Sie sich eine Abschätzung für

$$||u_p(t_n)||_{L^2(\Omega)}^2 + \int_0^{t_n} ||\Pi u_p(t)||_{H^1(\Omega)}^2 \le C \int_0^{t_n} ||f(t)||_{L^2}^2 dt, \qquad n = 0, \dots, N.$$

(Man kann sogar auf der rechte Seite $\int_0^{t_n} \|f(t)\|_{V'}^2 dt$ schreiben).

e) Zeigen Sie folgende a posteriori Fehlerabschätzung (hier steht V wie immer für $H_0^1(\Omega)$):

$$\int_0^T \|u_h - u_p\|_V^2 dt + \int_0^T \|(u_h - u_p)'\|_{V'}^2 dt \le \int_0^T \|f - \Pi f\|_{V'} dt + \int_0^T \|u_p - \Pi u_p\|_{H^1}^2 dt$$

Hinweis: die Norm der linken Seite ist $\|\cdot\|_X^2$ mit X aus Satz 9.33 der VO. Sie dürfen die inf-sup-Bedingung aus Satz 9.33 verwenden. Nutzen Sie geeignet die Orthogonalitäten von Π (vgl. Aufg. 3). Sie dürfen die Abschätzung $|(f - \Pi f, v - \Pi v)_{L^2}| \le ||f - \Pi f||_{V'} ||v - \Pi v||_{V}$ verwenden.