ANALYSIS II FÜR TPH, UE (103.091)

Test 2 Gruppe C (Fr, 13.06.2014) (mit Lösung)

— Unterlagen: eigenes VO-Skriptum. Arbeitszeit: 90 min. —

↑ FAMILIENNAME	↑ Vorname	$\uparrow Studium / Matr.Nr.$

1.	2.	3.	gesamt
Punkte			maximal 18

Tragen Sie bitte oben Ihre persönlichen Daten ein.

Als Grundlage für die Beurteilung dienen ausschließlich die in die entsprechenden $\boxed{\textit{K\"{a}stchen}}$ eingetragenen Antworten.

Machen Sie sich zunächst Notizen,

und tragen Sie dann erst Ihre Lösung samt Zusammenfassung des Lösungweges ein!

Die Größe der Kästchen ist auf die jeweilige Aufgabe abgestimmt.

• Aufgabe 1.

a) Betrachten Sie für $T \in (0,1)$ die Integralgleichung

$$x(t) = 2 \int_0^t s(1+x(s))ds, \quad t \in [0,T].$$
 (1)

(i) Zeigen Sie mit Hilfe des Banach'schen Fixpunktsatzes, dass (1) eine eindeutige Lösung $x \in C[0, T]$ besitzt!

Schreiben Sie (1) dafür als Fixpunktproblem Fx = x mit einem Operator $F: (C[0,T], \|\cdot\|_{\infty}) \to (C[0,T], \|\cdot\|_{\infty})$. Argumentieren Sie, warum F nach C[0,T] abbildet und beweisen Sie, dass F eine Kontraktion ist! (i): 1.5 P.

• Definiere den Operator F für $x \in C[0,T]$ durch

$$(Fx)(t) = 2\int_0^t s(1+x(s))ds.$$

- Stetigkeit von Fx: Für $x \in C[0,T]$ gilt, dass der Integrand s(1+x(s)) stetig ist. Damit folgt aus dem Hauptsatz der Integral- und Differentialrechung, dass Fx auf (0,T) differenzierbar und somit stetig ist.
- F ist Kontraktion auf $(C[0,T], \|\cdot\|_{\infty})$:

$$||Fx_1 - Fx_2||_{\infty} = \sup_{t \in [0,T]} \left| 2 \int_0^t s(1+x_1(s))ds - 2 \int_0^t s(1+x_2(s))ds \right|$$

$$\leq \sup_{t \in [0,T]} 2 \int_0^t s|x_1(s) - x_2(s)|ds$$

$$\leq ||x_1 - x_2||_{\infty} \cdot 2 \int_0^T sds$$

$$= T^2 ||x_1 - x_2||_{\infty}$$

Da $T \in (0,1)$ folgt $T^2 < 1$ und damit ist F eine Kontraktion.

• Damit folgt aus dem Banach'schen Fixpunktsatz die Existenz eines eindeutigen $x \in C[0,T]$ mit Fx = x, also existiert eine eindeutige Lösung der Integralgleichung (1).

(ii) Berechnen Sie die ersten drei Schritte x_1, x_2 und x_3 der Picard-Iteration mit Startwert $x_0(t) = 0$ und stellen Sie eine Formel für $x_n, n \in \mathbb{N}$ auf! (ii): 1.5 P.

Picard-Iteration:
$$x_n(t) = 2 \int_0^t s(1+x_{n-1}(s))ds$$
.
$$x_1(t) = 2 \int_0^t sds = t^2$$

$$x_2(t) = 2 \int_0^t s(1+s^2)ds = t^2 + \frac{t^4}{2}$$

$$x_3(t) = 2 \int_0^t s(1+s^2 + \frac{s^4}{2})ds = t^2 + \frac{t^4}{2} + \frac{t^6}{6}$$

Allgemeine Formel: $x_n(t) = \sum_{k=1}^n \frac{t^{2k}}{k!}$

(iii) Wie lautet die exakte Lösung der Integralgleichung? Zu welchem Anfangswertproblem ist (1) äquivalent? (iii): 1 P.

Exakte Lösung:
$$x(t) = \sum_{k=1}^{n} \frac{t^{2k}}{k!} = e^{t^2} - 1$$

Äquivalentes AWP durch Differenzieren der Integralgleichung: $\left\{ \begin{array}{l} x'(t)=2t(1+x(t))\\ x(0)=0 \end{array} \right.$

b) Betrachten Sie die Folge $\{f_n\}_{n\in\mathbb{N}}$ definiert durch

$$f_n(x) = x^{n+2}, \quad x \in [0, 1].$$

Zeigen Sie, dass $\{f_n\}_{n\in\mathbb{N}}$ eine Cauchy-Folge in $(C[0,1],\|\cdot\|_1)$ ist und bestimmen Sie die Grenzfunktion bezüglich $\|\cdot\|_1!$ Ist diese Funktion auch die Grenzfunktion bezüglich $\|\cdot\|_{\infty}$? Begründen Sie Ihre Antwort!

b): 2P.

• Die Folge $\{f_n\}_{n\in\mathbb{N}}$ ist monoton fallend, daher gilt für $n\leq m$:

$$||f_n - f_m||_1 = \int_0^1 |x^{n+2} - x^{m+2}| dx \le \int_0^1 x^{n+2} dx = \frac{1}{n+3}.$$

Wähle nun $N(\epsilon)$ so, dass $\frac{1}{N(\epsilon)+3} < \epsilon$, dann gilt

$$||f_n - f_m||_1 < \epsilon \quad \forall n, m \ge N(\epsilon).$$

• Die Grenzfunktion ist f(x) = 0, da

$$||f_n - f||_1 = \int_0^1 |x^{n+2}| dx = \frac{1}{n+3} \xrightarrow{n \to \infty} 0.$$

• f(x) = 0 ist nicht die Grenzfunktion bezüglich $\|\cdot\|_{\infty}$, da

$$||f_n - f||_{\infty} = \sup_{x \in [0,1]} |x^{n+2}| = 1 \quad \forall n \in \mathbb{N}.$$

a) Gegeben sei die Funktion $f: [-\pi, \pi) \to \mathbb{R}$:

$$f(x) = -x$$

- (i) Entwickeln Sie f in eine trigonometrische Fourierreihe.
- (ii) Untersuchen Sie die Reihe auf punktweise und gleichmäßige Konvergenz.
 - (i) f ist ungerade und kann in eine reine Sinus-Reihe entwickelt werden.

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} -x \sin(kx) dx$$

$$= \frac{2}{\pi} \left(\frac{1}{k} x \cos(kx) \Big|_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{k} \cos(kx) dx \right)$$

$$= \frac{2}{\pi} \left(\frac{\pi}{k} \cos(k\pi) - \frac{1}{k^2} \sin(kx) \Big|_{0}^{\pi} \right)$$

$$= \frac{2}{k} \cos(k\pi)$$

$$\Rightarrow b_k = \begin{cases} -\frac{2}{k} & k \text{ ungerade} \\ \frac{2}{k} & k \text{ gerade} \end{cases}$$

$$\Rightarrow f(x) \sim 2 \sum_{k=1}^{\infty} \frac{(-1)^k}{k} \sin(kx)$$

(ii) Punktweise Konvergenz: f ist beschränkt und kann zu einer 2π -periodischen Funktion \tilde{f} fortgesetzt werden. \tilde{f} ist stetig differenzierbar bis auf in $[-\pi, \pi]$ endlich viele Sprungstellen. Die Reihe konvergiert also punktweise gegen $\frac{f(x+)+f(x-)}{2}$.

Untersuche die Sprungstellen: $f((-\pi)+) = f(\pi+) = \pi$ und $f((-\pi)-) = f(\pi-) = -\pi$. Die Fourierreihe konvergiert also für $x \in \{-\pi, \pi\}$ gegen 0 und sonst punktweise gegen f.

Gleichmäßige Konvergenz: Da die 2π -periodische Fortsetzung \tilde{f} nicht stetig ist, konvergiert die Fourierreihe nicht gleichmäßig.

b) Gegeben sei das System $\{1, x, x^2, ...\}$. Orthonormieren Sie die ersten zwei Funktionen dieses Systems bezüglich des Skalarprodukts

$$(f,g) := \int_{-\infty}^{0} 4e^x f(x)g(x)dx$$

b): 2 P.

Hinweis: $\int xe^x dx = e^x(x-1) \text{ und } \int x^2e^x dx = e^x(x^2 - 2x + 2).$

Für das Gram-Schmidt-Verfahren und ein gegebenes System $\{b_i\}_{i\in I}$ gilt:

$$a_1 := b_1$$
 und $a_{n+1} = b_{n+1} - \sum_{k=1}^n \frac{(b_{n+1}, a_k)}{(a_k, a_k)} \cdot a_k, \ n \ge 1.$

In unserem Fall gilt also $a_1 = 1$, wobei

$$||a_1||^2 = \int_{-\infty}^0 4e^x \cdot 1 \ dx = 4e^x |_{-\infty}^0 = 4 \Rightarrow ||a_1|| = 2.$$

Weiters gilt $a_2 = x - \frac{(x,1)}{(1,1)} \cdot 1$, mit

$$(x,1) = \int_{-\infty}^{0} 4e^{x}x \cdot 1 \ dx = 4e^{x}(x-1) \mid_{-\infty}^{0} = -4.$$

 $(1,1) = ||a_{1}||^{2} = 4.$

Daraus folgt $a_2 = x + 1$ und

$$||a_2||^2 = \int_{-\infty}^0 4e^x (x+1)^2 dx = 4 \left(\int_{-\infty}^0 x^2 e^x dx + 2 \int_{-\infty}^0 x e^x dx + \int_{-\infty}^0 e^x dx \right) = 4 (2 + (-2) + 1) = 4 \Rightarrow ||a_2|| = 2.$$

Daraus ergibt sich das orthonormierte System

$$\phi_1 = \frac{a_1}{\|a_1\|} = \frac{1}{2}$$

$$\phi_2 = \frac{a_2}{\|a_2\|} = \frac{x+1}{2}.$$

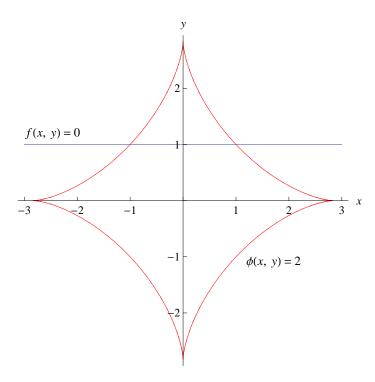
• Aufgabe 3.

Bestimmen Sie die Extrema der Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}$:

$$f(x,y) = (y-1)^2$$

unter der Nebenbedingung $\phi(x,y)=2$ mit $\phi\colon \mathbb{R}^2\to \mathbb{R}$:

$$\phi(x,y) = x^{\frac{2}{3}} + y^{\frac{2}{3}}$$



Gehen Sie dazu wie folgt vor:

a) Bestimmen Sie alle Punkte $P \in \mathbb{R}^2$, an denen das Skalarfeld $\phi(x,y)$ Singularitäten besitzt! Welche dieser Punkte erfüllen die Nebenbedingung?

a): 1 P.

Der Gradient

$$\nabla \phi = \begin{pmatrix} \frac{2}{3} x^{-\frac{1}{3}} \\ \frac{2}{3} y^{-\frac{1}{3}} \end{pmatrix}$$

ist an all jenen Punkten unbeschränkt, deren x - oder y - Komponente gleich Null ist. Die Singularitäten lauten daher

$$\left\{P = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R} \mid x = 0 \lor y = 0\right\}.$$

Auf der Kurve, die durch $\phi(x,y)=2$ definiert wird, liegen die Punkte

$$P_1 = \begin{pmatrix} \sqrt{8} \\ 0 \end{pmatrix}, \qquad P_2 = \begin{pmatrix} -\sqrt{8} \\ 0 \end{pmatrix}, \qquad P_3 = \begin{pmatrix} 0 \\ \sqrt{8} \end{pmatrix}, \qquad P_4 = \begin{pmatrix} 0 \\ -\sqrt{8} \end{pmatrix}.$$

b) Verwenden Sie die Methode der Lagrange- Multiplikatoren und Ihr Ergebnis aus a) zur Berechnung der möglichen Extrema.

Bestimmen Sie anschließend die globalen Minima und Maxima des Problems.

b): 3 P.

Die Lagrangefunktion lautet $F(x, y, \lambda) = (y - 1)^2 + \lambda \left(x^{\frac{2}{3}} + y^{\frac{2}{3}} - 2\right)$. Das Differenzieren dieser Funktion führt auf das Gleichungssystem

I:
$$\frac{\partial F}{\partial x} = \frac{2}{3}\lambda x^{-\frac{1}{3}} = 0$$

II: $\frac{\partial F}{\partial y} = 2(y-1) + \frac{2}{3}\lambda y^{-\frac{1}{3}} = 0$
III: $\frac{\partial F}{\partial \lambda} = x^{\frac{2}{3}} + y^{\frac{2}{3}} - 2 = 0.$

Aus Gleichung I und Gleichung II ergibt sich y=1 und $\lambda=0$. Durch Einsetzen dieser Beziehungen in Gleichung III findet man

$$x^{\frac{2}{3}} + 1 = 2 \Rightarrow x = \pm 1.$$

Aus der Methode der Lagrangemultiplikatoren erhält man die Extrema

$$E_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad E_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Die unter a) bestimmten Singularitäten der Nebenbedingung (P_1, P_2, P_3, P_4) stellen ebenfalls mögliche Extrema dar.

An den Punkten $E_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $E_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ nimmt die Funktion f(x,y) den Wert 0 und an den Punkten $P_1 = \begin{pmatrix} \sqrt{8} \\ 0 \end{pmatrix}$ und $P_2 = \begin{pmatrix} -\sqrt{8} \\ 0 \end{pmatrix}$ Wert 1 an.

Am Punkt $P_3 = \begin{pmatrix} 0 \\ \sqrt{8} \end{pmatrix}$ nimmt die Funktion f(x, y) den Wert $(9 - \sqrt{32})$ und am Punkt $P_4 = \begin{pmatrix} 0 \\ -\sqrt{8} \end{pmatrix}$ den Wert $(9 + \sqrt{32})$ an.

Da die Nebenbedingung eine kompakte Menge beschreibt, liegen an den Punkten E_1 und E_2 Minima vor. Der Punkt P_4 ist ein globales Maximum.

Betrachten Sie nun folgende Gleichung:

$$g(x,y) = x^{\frac{2}{3}} + y^{\frac{2}{3}} - 2$$

c) Zeigen Sie, dass die Funktion g(x,y) lokal um den Punkt $A=\begin{pmatrix} \xi \\ \eta \end{pmatrix}=\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ nach y=y(x) aufgelöst werden kann.

Die drei Bedingungen des Hauptsatzes über implizite Funktionen in zwei Variablen müssen überprüft werden.

(i)
$$g(\xi, \eta) = 0$$
: $(-1)^{\frac{2}{3}} + (1)^{\frac{2}{3}} - 2 = 1 + 1 - 2 = 0$

(ii) Die partiellen Ableitungen $\frac{\partial g}{\partial x}$, $\frac{\partial g}{\partial y}$ sind stetig in einer Umgebung von (ξ, η) .

(iii)
$$\frac{\partial g}{\partial y}\mid_{(\xi,\eta)}\neq 0$$
: $\frac{\partial g}{\partial y}\mid_{(\xi,\eta)}=\frac{2}{3}\frac{1}{\sqrt[3]{1}}=\frac{2}{3}\neq 0$

Da die Bedingungen erfüllt sind, kann die Funktion g(x,y) lokal nach y=y(x) aufgelöst werden.

d) Berechnen Sie die 1. Ableitung der implizit definierten Funktion y(x) am Punkt A durch implizite Differentiation.

d): 1 P.

$$y'(x)\mid_{(\xi,\eta)} = -\frac{\frac{\partial\phi}{\partial x}}{\frac{\partial\phi}{\partial y}}\mid_{(\xi,\eta)} \qquad \Rightarrow y'(x)\mid_{A} = -\frac{3}{2}\cdot\frac{2}{3}\frac{1}{\sqrt[3]{-1}} = 1$$