ANA, 2013W

Übungsaufgaben zur Analysis für Informatik und Wirtschaftsinformatik

Blatt 6

- 28. Man berechne die Grenzwerte nachstehender unbestimmter Formen:
 - (a) $\lim_{x \to 1} \frac{\ln(x)}{\sqrt{x^2 1}}$
 - (b) $\lim_{x\to\infty} \frac{3x^4}{e^{4x}}$
 - (c) $\lim_{x\to 1/2} (1-2x) \tan \pi x$
- 29. Für die unbestimmten Formen (a) ∞⁰ sowie (b) 1[∞] gebe man je zwei Beispiele mit unterschiedlichen Grenzwerten an.

(Hinweis: Finden Sie im Fall (a) Funktionen $f_i(x)$ und $g_i(x)$ für i=1,2, so dass $\lim f_1(x)=\lim f_2(x)=\infty$, $\lim g_1(x)=\lim g_2(x)=0$, aber $\lim f_1(x)^{g_1(x)}\neq \lim f_2(x)^{g_2(x)}$ gilt.)

- 30. Man zeige, dass der Logarithmus $\ln x$ für $x \to \infty$ schwächer wächst als jede positive Potenz x^{α} von x ($\alpha > 0$).
- 31. Man leite die unendlichen Reihen für sin(x) und cos(x) durch Entwicklung der beiden Funktionen in eine Taylorreihe mit dem Entwicklungspunkt $x_0 = 0$ her.
- 32. Man approximiere die Funktion $f(x) = 8(x + 1)^{3/2}$ durch eine lineare bzw. eine quadratische Polynomfunktion im Punkt $x_0 = 0$.
- 33. Man entwickle die Funktion $f(x) = e^{(e^x)}$ im Punkt $x_0 = 2$ in eine Potenzreihe und gebe das Restglied R_n nach Lagrange an. Wie groß ist der Fehler $R_3(x)$, falls man diese Reihe nach dem vierten Glied abbricht? Man schätze diesen Fehler für die Werte x = 1,9 und x = 2,1 ab.