ANA, 2013W

Übungsaufgaben zur Analysis für Informatik und Wirtschaftsinformatik

Blatt 9

- 43. Wird der Wechselstroms $i(t) = i_0 \sin(t)$ gleichgerichtet, so ergibt sich ein pulsierender Gleichstrom der Form
 - (a) $i_1(t) = \begin{cases} i_0 \sin t & 0 \le t \le \pi \\ 0 & \pi < t < 2\pi \end{cases}$ beim Einweggleichrichter bzw.
 - (b) $i_2(t) = |i_0 \sin t|$, $0 \le t < 2\pi$ beim Doppelgleichrichter.

Man ermittle den Gleichrichtwert des Wechselstromgleichrichters, d. i. der Mittelwert der Stromstärke $i_1(t)$ bzw. $i_2(t)$ auf dem Intervall $[0, 2\pi]$ (Skizze).

44. Man berechne die folgenden uneigentlichen Integrale:

(a)
$$\int_{1}^{e^{3}} \frac{dx}{x\sqrt{\ln x}}$$
 (b)
$$\int_{0}^{\infty} xe^{-x} dx$$

45. Man berechne $\int_{1}^{\infty} \frac{1}{x\sqrt{x-1}} dx$.

(Anleitung: Zum Integrieren wähle man die Substitution $u = \sqrt{x-1}$. Ferner beachte man, dass das angegebene Integral sowohl bei x = 1 als auch bei $x = \infty$ uneigentlich ist.)

- 46. Mit Hilfe des Integralkriteriums zeige man, dass die so genannte hyperharmonische Reihe $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ für $\alpha>1$ konvergent, für $\alpha\leq 1$ hingegen divergent ist.
- 47. Man stelle den Definitionsbereich und Wertebereich folgender Funktionen fest und beschreibe die Höhenlinien:

(a)
$$z = x^2 - y^2$$
 (b) $z = \sqrt{1 - \frac{x^2}{8} - \frac{y^2}{16}}$

48. Eine Funktion $f(x_1,...,x_n)$ heißt homogen vom Grad r, falls für jedes feste $\lambda > 0$ und alle $(x_1,...,x_n)$ aus einem geeigneten Definitionsbereich gilt

$$f(\lambda x_1,...,\lambda x_n) = \lambda^r f(x_1,...,x_n).$$

Man prüfe nach, ob die Funktionen

(a)
$$f(x,y,z) = x + (yz)^{1/2}$$
 (für $x,y,z \ge 0$),

(b)
$$f(x,y) = x^2 + y$$
,

(c) $f(x,y) = ax^b y^c$ (mit $a,b,c \in \mathbb{R}$, x,y > 0) homogen sind.