Differentialgeometrie (104.358) Übungsblatt für den 21.3.2017

7. Sei (γ, N) ein Streifen für die Kurve $\gamma : \mathbb{R} \supseteq \mathcal{I} \to \mathbb{R}^3$ und $\tilde{N} := N \cos \phi + B \sin \phi$, wobei $\phi : \mathcal{I} \to \mathbb{R}$ glatt ist und $B = T \times N$.

Zeigen Sie, dass (γ, \tilde{N}) ein Streifen ist und berechnen Sie, wie sich die Krümmungen κ_n , κ_g und die Torsion τ beim Wechsel von (γ, N) zu (γ, \tilde{N}) ändern.

- 8. Sei (γ, N) ein Streifen für die Kurve $\gamma : \mathbb{R} \supseteq \mathcal{I} \to \mathbb{R}^3$ und $\tilde{\gamma} := \gamma \circ \psi$ eine Reparametrisierung von γ , also $\psi : \mathcal{I} \to \mathcal{I}$ mit $\psi' \neq 0$.
 - (a) Zeigen Sie, dass $(\tilde{\gamma}, \tilde{N})$ mit $\tilde{N} = N \circ \psi$ ein Streifen ist.
 - (b) Wie ändern sich die Krümmungen κ_n , κ_g und die Torsion τ beim Wechseln von (γ, N) zu $(\tilde{\gamma}, \tilde{N})$?
- 9. Sei $\gamma: \mathbb{R} \supseteq \mathcal{I} \to \mathbb{R}^3$ eine reguläre Parametrisierung einer Gerade, also $\gamma' \times \gamma'' = 0$, und sei F ein angepasster Rahmen für γ .

Zeigen Sie, dass $\kappa_n = 0 = \kappa_g$ und finden Sie ein Einheitsnormalenfeld N so, dass $\tau = 1$.

10. Beweisen Sie:

Eine bogenlängenparametrisierte Kurve γ in \mathbb{R}^3 ist genau dann eben, wenn es einen angepassten Rahmen mit $\kappa_q = 0 = \tau$ gibt.

Gilt die gleiche Aussage auch für $\kappa_n = 0 = \tau$ und für $\kappa_n = 0 = \kappa_g$?