Klassische Differentialgeometrie (104.469) Übungsblatt für den 25.4.2017

24. Zeigen Sie, dass das Ellipsoid mit zwei entfernten Punkten

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1, \ |z| < c\}, \quad a > b > c,$$

eine Fläche ist, indem Sie eine reguläre Parametrisierung finden.

25. Zeigen Sie, dass der Torus

$$T^2 := \{(x, y, z) \in \mathbb{R}^3 \mid \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = r^2\}$$

mit 0 < r < R eine Fläche ist.

<u>Hinweis:</u> Auf welche Weise ist der Torus aus Kreisen aufgebaut? Verwenden Sie Parametrisierungen von Kreisen, um eine Parametrisierung des Torus zu finden.

26. Berechnen Sie die induzierte Metrik des Katenoids

$$\sigma: (u, v) \mapsto \sigma(u, v) := (\cosh(u)\cos(v), \cosh(u)\sin(v), u).$$

27. Zeigen Sie, dass eine Fläche $\sigma: \mathbb{R}^2 \supseteq U \to \mathbb{R}^3$ genau dann konform parametrisiert ist, wenn die Parametrisierung Winkel erhält, das heißt, wenn Winkelmessung mit der induzierten Metrik das gleiche Ergebnis liefert wie Winkelmessung mit der euklidischen Metrik auf \mathbb{R}^2 .

<u>Hinweis</u> für den Beweis der Rückrichtung der Äquivalenz: Verwenden Sie die orthogonalen Vektoren $\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^2$ und $\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$. Für diese gilt z.B. d $\sigma\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \sigma_u$.

28. Gegeben sei die Sphäre, $S^2 \subset \mathbb{R}^3$, mit Radius 1 und Mittelpunkt im Ursprung. Sei $N = (0,0,1) \in S^2$ der Nordpol der Sphäre. Für jeden Punkt X = (x,y,0) in der x^1x^2 -Ebene legen Sie nun einen Gerade durch X und N. Diese Gerade schneidet die Sphäre im Nordpol und in einem weiteren Punkt, \tilde{X} , und definiert so eine Abbilgung $X \mapsto \tilde{X}$. Finden Sie diese Abbildung,

$$\Pi: \mathbb{R}^2 \to S^2,$$

$$X \mapsto \tilde{X}.$$

Was ist das Bild von Π . Π kann als Fäche $\Pi: \mathbb{R}^2 \to \mathbb{R}^3$ im \mathbb{R}^3 interpretiert werden. Vergewissern Sie sich, dass Π regulär und injektiv ist. Was ergibt $\lim_{X \to \infty} \Pi(X)$?

Bestimmen Sie auch die erste Fundamentalform.

Sei g eine beliebige Gerade in \mathbb{R}^2 . Wie sieht die entsprechende Kurve $\gamma = \Pi \circ g$ aus? Wie sieht die Flächenkurve für einen Kreis in \mathbb{R}^2 mit Mittelpunkt im Ursprung aus?

Anmerkung: Die Umkehrabbildung, Π^{-1} , heißt stereographische Projektion.