Name:			
Mat.Nr.:			
Bitte keinen Rotstift verwenden!			
105.042 Risikotheorie			
${\rm Vorlesung,~2006W,~4.0h}$			
31.Jänner 2007			

Hubalek

(Dauer 90 Minuten, alle Unterlagen sind erlaubt)

Anmeldung zur mündlichen Prüfung auf der Liste oder per E-Mail an den Vortragenden!

Bsp.	Max.	Punkte
1	5	
2	5	
3	5	
Σ	15	

- 1. In diesem Beispiel ist die Verzinsung durchwegs zu vernachlässigen, d.h. Sie sollen r=1 verwenden.
 - (a) Gegeben sei ein Risiko X, das stetig gleichverteilt auf dem Intervall (a, b) ist, wobei gelten soll $-\infty < a < b < +\infty$. Berechnen Sie $VaR_{\alpha}(X)$ für $\alpha \in (0, 1)$.
 - (b) Berechen Sie $ES_{\alpha}(X)$.
 - (c) Gegeben sind zwei Risiken X_1 und X_2 , die unabhängig und beide stetig gleichverteilt auf (-4, 96) sind. Berechnen Sie $ES_{0.1}[X_1]$ und $ES_{0.1}[-X_2]$.
 - (d) Ist das Portfolio $Z = 100X_1 X_2$ ein akzeptables Risiko, wenn Ihre Akzeptanzmenge duch expected shortfall mit $\alpha = 0.1$ bestimmt wird? (Rechnung oder Begründung!)
- 2. Gegeben sei ein klassischer Cramer-Lundberg-Ruinprozeß mit Anfangskapital x, Prämienrate c, Schadensintensität λ und Schäden, die Poissonverteilt mit Parameter μ sind.
 - (a) Wie groß muß die Prämienrate c sein, damit der relative Sicherheitszuschlag positiv ist, wenn die anderen Parameter vorgegeben sind?
 - (b) Angenommen der relative Sicherheitszuschlag ist positiv. Zeigen Sie, daß der Cramer-Lundberg-Koeffizient existiert.
 - (c) Angenommen $x=50, c=12, \lambda=2, \mu=5$. Berechnen Sie den relativen Sicherheitszuschlag.
 - (d) Für den Cramer-Lundberg-Koeffizienten im obigen Zahlenbeispiel gilt 0.04 < r < 0.07. (Das müssen Sie nicht überprüfen.) Finden Sie eine Abschätzung für die Ruinwahrscheinlichkeit, die besser als $\psi(50) < 0.1$ ist. (Begründung!) Hinweis: Untersuchen Sie die Gleichung für r im Intervall [0.04, 0.07].
- 3. (a) Gegeben sind zwei unabhängige Schäden X_1 und X_2 die Poisson-verteilt mit Parametern $\lambda_1 = 10$ bzw. $\lambda_2 = 20$ sind. Berechnen Sie die Prämie für $S = X_1 + X_2$ nach dem Standardabweichungsprinzip mit Sicherheitszuschlag $\beta = 0.75$.
 - (b) Gegeben ist ein Schaden S, der Poisson-verteilt mit Erwartungswert 0.75 ist. Berechnen Sie die Prämie nach dem Perzentilprinzip mit Parameter $\varepsilon = 5\%$.
 - (c) Gegeben sind drei Versicherungsunternehmen, die ihre Prämien nach dem Exponentialprinzip mit Parametern $a_1 = 1$, $a_2 = 2$, $a_3 = 3$ berechnen. Die Unternehmen wollen gemeinsam drei unabhängige Schäden S_1 , S_2 , S_3 versichern, wobei die Schäden jeweils exponentialverteilt mit Parametern $\alpha_1 = 11$, $\alpha_2 = 12$, $\alpha_3 = 13$ sind. Geben Sie die Momenterzeugende Funktion des Gesamtschadens $S = S_1 + S_2 + S_3$ an. Wie sollen die Unternehmen den Gesamtschaden aufteilen, sodaß die Gesamtprämie minimal ist, und wie hoch ist die so erzielte minimale Gesamtprämie?

.