Übungsblatt 3

- 1. Konstruktion einer bivariaten Normalverteilung mit vorgegebener Korrelation. Seien $U, V \sim \mathcal{N}(0, 1)$ unabhängige, standardnormalverteilte Zufallsvariablen. Gegeben sei der Wert $\rho \in [-1, 1]$ und definiere $W := \sqrt{1 - \rho^2}U + \rho V$.
 - (a) Zeige, dass (V, W) bivariat normalverteilt ist, $W \sim \mathcal{N}(0, 1)$ und $Cov(V, W) = \rho$.
 - (b) Seien $\mu_X, \mu_Y \in \mathbb{R}$ und $\sigma_X, \sigma_Y \in [0, \infty)$. Definiere $X := \mu_X + \sigma_X V$ und $Y := \mu_Y + \sigma_Y W$. Zeige, dass (X, Y) bivariat normalverteilt ist, $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ und $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, und für den Korrelationskoeffizient $\operatorname{Corr}(X, Y) = \rho$ gilt.
- 2. Seien X und Z unabhängige Zufallsvariablen mit $X \sim \mathcal{N}(0,1)$ und

$$\mathbb{P}[Z=1] = \mathbb{P}[Z=-1] = \frac{1}{2}$$

Definiere die Zufallsvariable Y := ZX und zeige, dass $Y \sim \mathcal{N}(0,1)$ und Cov(X,Y) = 0, aber (X,Y) nicht normalverteilt ist.

3. Für alle $n \in \mathbb{N}$ sei $X_n \sim \mathcal{B}(n, p_n)$ binomialverteilt mit Parametern $n \in \mathbb{N}$ und $p_n \in [0, 1]$. Gelte noch zusätzlich $\lim_{n\to\infty} np_n = \lambda$ für ein $\lambda \in (0, \infty)$. Zeige mit Hilfe von charakteristischen Funktionen, dass die Folge der Zufallsvariablen $(X_n)_{n\in\mathbb{N}}$ in Verteilung gegen eine poissonverteilte Zufallsvariable $X \sim \mathcal{P}(\lambda)$ mit Parameter λ konvergiert.

Hinweis: Verwende charakteristische Funktionen. (Die charakteristischen Funktionen einer Binomialverteilung bzw. einer Poissonverteilung müssen dabei nicht berechnet werden.)

- 4. Momenterzeugende Funktion der nicht-zentralen χ^2 -Verteilung. Sei $Y \sim \mathcal{N}(\mu, \sigma^2 I_d)$ mit $\mu \in \mathbb{R}^d$ und $\sigma^2 \geq 0$. Die Komponenten von Y sind unabhängig und (nicht-zentral) normalverteilt. Die Zufallsvariable $\|Y\|_2^2 = \sum_{i=1}^d Y_i^2$ hat dann eine nicht-zentrale χ^2 -Verteilung. Zeige:
 - (a) Die momenterzeugende Funktion der nicht-zentralen χ^2 -Verteilung ist gegeben durch

$$\mathbb{E}[\exp(\rho \|Y\|_2^2)] = \begin{cases} \frac{1}{(1 - 2\rho\sigma^2)^{d/2}} \exp\left(\frac{\rho \|\mu\|_2^2}{1 - 2\rho\sigma^2}\right), & 2\rho\sigma^2 < 1\\ \infty, & 2\rho\sigma^2 \ge 1 \end{cases}$$

(b) $\mathbb{E}[\|Y\|_2^{2p}] < \infty$ für alle $p \ge 0$.

Hinweis zu (b): Verwende Beispiel 3 aus der zweiten Übung und (a).

5. Sei $\Lambda \sim \Gamma(\alpha, \beta)$ mit $\alpha, \beta > 0$. Zeige mit $p \in (-\alpha, \infty)$ und $\rho \in (-\infty, \beta)$, dass

$$\mathbb{E}[\Lambda^p e^{\rho \Lambda}] = \frac{\beta^{\alpha} \Gamma(\alpha + p)}{(\beta - \rho)^{\alpha + p} \Gamma(\alpha)}$$

gilt. Insbesondere ist $\mathbb{E}[\Lambda] = \frac{\alpha}{\beta}$ und $Var(\Lambda) = \frac{\alpha}{\beta^2}$.

Zum Termin: 29.10.2015