Mat.Nr.:
Bitte keinen Rotstift verwenden!
105.593 Einführung in Stochastische Prozesse und Zeitreihenanalyse Vorlesung, 2012S, 2.0h Juni 2012 Hubalek/Scherrer
(Dauer 90 Minuten, alle Unterlagen sind erlaubt)
Sie erhalten eine E-Mail mit dem schriftlichen Ergebnis und Information zur Anmeldung zur mündlichen Prüfung.

 \sum

Name:

1. Gegeben ist ein strikt mini-phasiger ARMA(p,q) Prozess

$$x_t = a_1 x_{t-1} + \dots + a_p x_{t-p} + \epsilon_t + b_1 \epsilon_{t-1} + \dots + b_q \epsilon_{t-q}$$

wobei $(\epsilon_t) \sim WN(\sigma^2), \ \sigma^2 > 0, \ a_p \neq 0 \ \text{und} \ b_q \neq 0.$

(a) Zeigen Sie, dass die ein-Schrittprognose \hat{x}_{t+1} aus der unendlichen Vergangenheit gegeben ist durch:

$$\hat{x}_{t+1} = a_1 x_t + \dots + a_p x_{t+1-p} + b_1 \epsilon_t + \dots + b_q \epsilon_{t+1-q}$$

Berechnen Sie auch die Varianz $\sigma_1^2 = \mathbf{E}\hat{u}_{t+1}$ des entsprechenden Prognosefehlers $\hat{u}_{t+1} = x_{t+1} - \hat{x}_{t+1}$.

(b) Zeigen Sie, dass die zwei-Schrittprognose \hat{x}_{t+2} aus der unendlichen Vergangenheit gegeben ist durch:

$$\hat{x}_{t+2} = a_1 \hat{x}_{t+1} + a_2 x_t + \dots + a_p x_{t+2-p} + b_2 \epsilon_t + \dots + b_q \epsilon_{t+2-q}$$

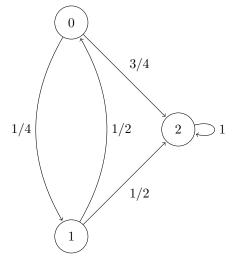
Berechnen Sie auch die Varianz $\sigma_2^2 = \mathbf{E}\hat{u}_{t+2}$ des entsprechenden Prognosefehlers $\hat{u}_{t+2} = x_{t+2} - \hat{x}_{t+2}$.

Hinweis: Verwenden Sie

$$\mathbb{H}_x(t) = \overline{\operatorname{span}}(x_s \mid s \le t) = \overline{\operatorname{span}}(\epsilon_s \mid s \le t) = \mathbb{H}_{\epsilon}(t)$$

und argumentieren Sie mit dem Projektionssatz!

2. Gegeben sei eine Markovkette $(X_n)_{n\geq 0}$ mit Zustandsraum $S=\{0,1,2\}$, Anfangsverteilung $\lambda_0=1/3$, $\lambda_1=1/3$, $\lambda_2=1/3$ und einer Übergangsmatrix P, die durch folgendes Diagramm dargestellt wird.



- (a) Geben sie P als reelle 3×3 -Matrix an und berechnen Sie die unbedingte Verteilung von X_2 , also $\mathbb{P}[X_2 = i]$ für i = 0, 1, 2 an.
- (b) Sei $H = \inf\{n \geq 0 : X_n = 2\}$. Bestimmen Sie $h_i = \mathbb{P}_i[H < \infty]$ für i = 0, 1, 2.
- (c) Bestimmen Sie $\mathbb{E}_i(H)$ für i = 0, 1, 2.
- (d) Für $n \ge 0$ sei $Y_n = \max(X_0, \dots, X_n)$ und $Z_n = (X_n, Y_n)$. Zeigen Sie sorgfältig, dass $(Z_n)_{n \ge 0}$ eine Markovkette ist. Welchen Zustandsraum wählen Sie?
- (e) Skizzieren Sie die Übergangsmatrix von $(Z_n)_{n>0}$ in einem Diagramm.

Hinweis: Vielleicht versuchen Sie (e) vor (d).

3. Gegeben ist ein stationärer Prozess (x_t) mit Erwartungswert $\mathbf{E}x_t = \mu$ und Autokovarianzfunktion $\gamma_x(k) = \text{Cov}(x_{t+k}, x_t)$. Betrachten Sie nun den gefilterten Prozess

$$(y_t) = (1 - aB)^{-1}(x_t)$$

wobei |a| < 1 gilt. (B bezeichnet den Backshift-Operator.) Berechnen Sie $\mathbf{E}y_t$ und die Autokovarianzfunktion $\gamma_y(k) = \text{Cov}(y_{t+k}, y_t)$. (D.h. drücken Sie $\mathbf{E}y_t$ und die ACF $\gamma_y(k)$ durch $\mathbf{E}x_t$, die ACF $\gamma_x(k)$ und den Parameter a aus.) Zeigen Sie auch folgende Abschätzung für die Varianz von y_t :

$$\gamma_y(0) \le \left(\frac{1}{1-|a|}\right)^2 \gamma_x(0)$$

2

- 4. Sei $\{W(t): t \geq 0\}$ eine Brownsche Bewegung, und $\{\mathcal{F}(t): t \geq 0\}$ die von ihr erzeugte Filtration.
 - (a) Berechnen Sie Cov[W(4) W(1), W(5) W(2)].
 - (b) Berechnen Sie $E[W(t+1)W(t)|\mathcal{F}(t-1)]$ für $t \geq 1$.
 - (c) Wir setzen $t_i^n = i/n$ für $n \ge 1$ und i = 0, ..., n. Bestimmen Sie Erwartungswert und Varianz von

$$C_n = \sum_{i=0}^{n-1} (W(t_{i+1}^n) - W(t_i^n))(t_{i+1}^n - t_i^n), \quad n \ge 1.$$

- (d) Zeigen Sie C_n konvergiert für $n\to\infty$ in L^2 und bestimmen Sie den Grenzwert. Hinweis: Vorige Teilaufgabe.
- (e) Für $t \geq 0$ sei $f(t) = (1-t)W(t)I_{[0,1)}(t), t \geq 0$. Begründen Sie kurz warum $f \in M^2$ und berechnen Sie mit der Ito-Isometrie $\left\| \int_0^\infty f(t)dW(t) \right\|_{L^2}$. (Wurzel nicht vergessen!)