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The resulting likelihood function is

L(β, λ1, . . . , λA) =
N
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This is similar to (17.42), the log-likelihood for discrete time PH model, aside

from the choice of function F . The hazard (17.40) is the extreme value cdf evalu-

ated at ln λ0a + x(ta−1)
β, so (17.40) yields the complementary log-log model binary

choice model (see Table 14.3) rather than the more commonly used logit or probit

model.

17.11. Duration Example: Unemployment Duration

The following empirical application uses the data of McCall (1996), generously pro-

vided to us by the author Brian McCall. The data set is derived from the January

Current Population Survey’s Displaced Workers Supplements (DWS) for the years

1986, 1988, 1990, and 1992. We refer to the duration measure (spell) in this exam-

ple as unemployment duration, though more accurately it represents joblessness du-

ration since DWS does not provide information as to whether a person is looking for

job or not.

For this application, information on the part-time or full-time status of the first

postdisplacement job is required. To determine whether the first postdisplacement job

was part-time or full-time, the following method is adopted. The first postdisplace-

ment job is designated as part-time if a subject was still in that job at the time of the

survey and if the subject was working less than 35 hours per week in that job in the

previous week.

Table 17.6 defines the key economic covariates used to explain joblessness duration.

The number of covariates in the models estimated is quite large, but in the interest of

brevity only a subset is listed. McCall (1996) provides a fuller description.

Table 17.6. Unemployment Duration: Description of Variables

Variable Name Variable Label Mean

spell periods jobless: two-week interval 6.248

CENSOR1 1 if reemployed at full-time job 0.321

CENSOR2 1 if reemployed at part-time job 0.102

CENSOR3 1 if reemployed but left job: pt–ft status unknown 0.172

CENSOR4 1 if still jobless 0.375

UI 1 if filed UI claim 0.553

RR eligible replacement rate 0.454

DR eligible disregard rate 0.109

TENURE tenure years in lost job 4.114

LOGWAGE log weekly earnings 5.693
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Figure 17.3: Unemployment duration: Kaplan-Meier estimate of survival function. U.S. data

from 1986–92 on 3343 spells, some incomplete.

Unemployment durations have been measured in two-week intervals. Four binary

variables (CENSOR1, CENSOR2, CENSOR3, and CENSOR4) have been introduced

to indicate the status of the first postdisplacement job. For the analysis in this chapter

we use CENSOR1. Thus a spell is complete if person is re-employed at a full-time job.

Another indicator variable UI is used to denote whether the subject filed an unemploy-

ment claim or not. Replacement rate, which is the weekly benefit amount divided by

the amount of weekly earnings in the lost job, is represented by the variable RR. “Dis-

regard” is defined to be the threshold amount up to which recipients of unemployment

insurance who accept part-time work can earn without any reduction in unemployment

benefits. Disregard rate is the disregard divided by weekly earnings in the lost job. It

is described by the variable DR in this example. As we can see, all the other variables

are self-explanatory.

We begin with a descriptive analysis of the duration data. The simplest first step is to

plot the Kaplan–Meier survival curve, which is shown in Figure 17.3 by the dark line.

The lighter lines around the estimated Kaplan–Meier survival curve represent 95%

confidence intervals developed in Section 17.5.2. As expected, the estimated survival

curve declines rapidly at first and then slowly.

As we see from Table 17.7, after the first period the survival probability is 0.91, in-

dicating that roughly 9% of the sampled individuals have terminated their spell within

the first two weeks of beginning joblessness spell.

In Figure 17.4, we plot the survival function by UI, that is, by whether the subject

claims unemployment insurance or not. Again, as one can expect, it shows that those

who claim unemployment insurance are more likely to remain unemployed than those

who do not claim unemployment insurance.

The Nelson–Aalen cumulative hazard in Figure 17.5 shows little variation in the

hazard rate, which translates into an approximately linear hazard. If the crude hazard

rate varies a lot, then the cumulative hazard would appear nonlinear.
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Table 17.7. Unemployment Duration: Kaplan–Meier

Survival and Nelsen–Aalen Cumulated Hazard

Functions

Time Survivor Function Cumulative Hazard

1 0.9121 0.0879

2 0.8541 0.1514

3 0.8103 0.2027

4 0.7864 0.2322

5 0.7376 0.2943
...

...
...

12 0.5974 0.5005

13 0.5680 0.5496

14 0.5270 0.6219
...

...
...

26 0.3651 0.9809

27 0.3098 1.1325

28 0.3098 1.1325

The cumulated hazard functions by UI recipiency, shown in Figure 17.6, exhibit

the expected pattern: The hazard increases at a higher rate for those who do not claim

unemployment insurance than it does for those who do.

Next we consider four parametric regression models using the covariates UI, RR,

DR, and LOGWAGE and the interaction terms RRUI and DRUI. The four models are

exponential, Weibull, Gompertz, and Cox PH. Writing the hazard function as

λ(t |x) = λ0(t, α)φ(x,β) = λ0(t, α) exp(x
β),

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

0 10 20 30

Unemployment Duration in 2-week intervals

Received UI (UI = 1)

No UI (UI = 0)

Survival Function Estimates by UI Status 

Figure 17.4: Unemployment duration: estimated survival functions by whether or not sub-

jects receive unemployment insurance. Same data as Figure 17.3.
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Figure 17.5: Unemployment duration: Nelson-Aalen estimate of cumulative hazard function.

Same data as Figure 17.3.

recall that exponential hazard assumes λ0(t, α) = constant = exp(a) for some con-

stant a, the Weibull model assumes λ0(t, α) = exp(a)αtα−1 (i.e., monotonic hazards),

Gompertz assumes λ0(t, α) = exp(a) exp(γ t), and the Cox PH model has no inter-

cept and makes no assumption about the shape of the baseline hazard. Recall also that

the formulation here is of the proportional hazard type and can also be interpreted

either as a parametric regression model or as an AFT model. In this parameteriza-

tion of the likelihood function, the parameters (α,β) are estimated. These are given

in Table 17.8 with the associated t-statistics. We also list the negative of the log-

likelihood, but recall that for the Cox PH model it is the partial log-likelihood. Both

exponential and Gompertz models fit equally well. The Weibull model provides the
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Figure 17.6: Unemployment duration: estimated cumulative hazard functions by whether

or not receive unemployment insurance. Same data as Figure 17.3.
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Table 17.8. Unemployment Duration: Estimated Parameters from Four Parametric

Models

Exponential Weibull Gompertz Cox PH

Var coeff. t coeff. t coeff. t coeff. t

RR 0.472 0.79 0.448 0.70 0.472 0.78 0.522 0.91

DR −0.576 −0.75 −0.427 −0.53 −0.563 −0.74 −0.753 −1.04

UI −1.425 −5.71 −1.496 −5.67 −1.428 −5.69 −1.317 −5.55

RRUI 0.966 0.92 1.105 1.57 0.969 1.58 0.882 1.52

DRUI −0.199 −0.20 −0.299 −0.28 −0.211 −0.21 −0.095 −0.10

LOGWAGE 0.35 3.03 0.37 2.99 0.35 3.03 0.34 3.03

CONS −4.079 −4.65 −4.358 −4.74 −4.097 −4.65 – –

α 1.129

−ln L 2700.7 2687.6 2700.6 –

best fit. As we see from Table 17.8, the fit of the Weibull model exhibits positive state

dependence (α = 1.129 > 1); that is, the probability of the spell terminating increases

as the spell lengthens.

For all the models considered, only UI and LOGWAGE are significant whereas

other covariates are not. The estimated coefficient of UI is negative for all models,

implying that the joblessness spell of those who claim unemployment insurance ter-

minates slower. There is little variation of the estimates of UI across different models:

This estimate in Weibull and Gompertz models is approximately 5% and 0.2% higher

in absolute value than that in the exponential model, whereas it is 8% lower in the Cox

PH model. Similarly, the estimate of the coefficient of LOGWAGE is positive for all

the models and exhibits very little variation across models.

Whereas in the econometric literature it is common to report the estimate of (α,β)

coefficients of the hazard function in AFT metric, in the biostatistics literature a differ-

ent parameterization is often used based on the PH metric. Note that the hazard ratio

λ(t |x)/λ0(t, α) = φ(x,β) = exp(xβ). For a categorical 0/1 scalar variable x , the im-

pact of a change from 0 to 1 is given by exp(β) − 1, which measures impact relative to

the baseline hazard. Numerous packages give the users an option to estimate the model

in either or both metrics. The relative merits of the two parameterization are discussed

in Cleves, Gould, and Guitirrez (2002).

Consider the exponential specification in Table 17.9 where the coefficients are ex-

ponentials of the corresponding ones Table 17.8. Here UI has hazard ratio 0.241. This

means that belonging to the category of subjects that claims unemployment insurance

decreases the hazard by nearly 76% over the baseline hazard. Similarly, for Weibull,

Gompertz, and Cox PH models, the hazard decreases by about 78%, 76%, and 73%,

respectively.

For this example, we have taken into account right-censoring and have ignored the

role of unobserved heterogeneity. Hence the results obtained from the three models are

qualitatively similar. However, the relatively few included variables with significant
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Table 17.9. Unemployment Duration: Estimated Hazard Ratios from Four Parametric

Models

Exponential Weibull Gompertz Cox PH

Var β t β t β t β t

RR 1.603 0.63 1.565 0.57 1.604 0.62 1.686 0.71

DR 0.562 −1.02 0.653 −0.66 0.570 −0.99 0.471 −1.55

UI 0.241 −12.65 0.224 −13.12 0.240 −12.65 0.268 −11.53

RRUI 2.626 1.01 2.760 0.99 2.635 1.01 2.416 1.01

DRUI 0.819 −0.22 0.742 −0.33 0.810 −0.23 0.909 −0.10

LOGWAGE 1.420 2.56 1.441 0.08 1.42 2.55 1.40 2.57

α 1.129

−ln L 2700.7 2687.6 2700.6 –

coefficients probably indicates that large unexplained variation (perhaps caused by

unobserved heterogeneity) may be a serious problem. This issue is considered further

in the next chapter.

17.12. Practical Considerations

Most computer packages offer a good selection of computer programs for parametric

survival analysis. Standard nonparametric Kaplan–Meier survival function estimates,

with or without confidence intervals, with both numeric and graphic output are widely

available. In some cases survival analysis modules are sufficiently detailed to warrant

a special manual. For example, Allison (1995) offers a practical guide to survival anal-

ysis in the SAS system; Cleves et al. (2002) provide a tutorial style guide to survival

analysis in STATA. Not only do these guides explain the mechanics of implementing

particular program commands, but in many cases they provide insightful expositions of

the subtleties arising from specific features of data, alternative parameterizations, and

interpretation of results. A convenient way to learn about duration data analysis is by

using the examples in econometrics or statistical packages such as LIMDEP, STATA,

SAS, or S-Plus. The program manuals are themselves excellent sources of information

for standard models.
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