MULTIVARIATE STATISTIK

http://www.statistik.tuwien.ac.at/lv-guide

Blatt 6

Wintersemester 2012/13

31) Man zeige folgende Darstellung der partiellen Korrelation zwischen X und Y bei gegebenem U durch die Korrelationen der drei Variablen:

$$\rho_{x,y|u} = \frac{\rho_{x,y} - \rho_{x,u}\rho_{y,u}}{\sqrt{(1 - \rho_{x,u}^2)(1 - \rho_{y,u}^2)}}$$

(Man gehe von normalverteilten Größen aus.)

- 32) Die stochastischen Größen X und Y seien unabhängig verteilt. Muß dann auch die partielle Korrelation $\rho_{X,Y|U}$ bezüglich einer beliebigen Größe U gleich $\rho_{X,Y|U} = 0$ sein ?
- 33) Die quadratische Matrix $M \in \mathbb{R}^{k \times k}$ sei positiv definit. Man begründe, daß die Mahalanobis-Distanz

$$||x|| = \sqrt{x^{\top} M x}$$

eine Norm auf \mathbb{R}^k ergibt.

- **34)** Für eine Beobachtung einer Multinomialverteilung $X = (X_1, \ldots, X_k)$ mit $X \sim M_{n,\theta_1,\ldots,\theta_k}$ bestimme man die Fisher Informationsmatrix $I(\theta_1,\ldots,\theta_k)$ (eigentlich $I(\theta_1,\ldots,\theta_{k-1})$).
- 35) Welche asymptotische Normalverteilung besitzt der Maximum-Likelihood Schätzer von $\theta_1, \ldots, \theta_k$ einer Multinomialverteilung (Anteilsschätzung)? (Vergleiche Beispiel 34 oder Beispiel 20) Man gebe einen Schätzer für die Kovarianzmatrix des Maximum-Likelihood Schätzers an. Wie kann unter Verwendung dieses Schätzers ein asymptotischer Konfidenzbereich für $\theta_1, \ldots, \theta_k$ einer Multinomialverteilung bestimmt werden?
- 36) Bei einer Umfrage die Parteien A, B, C betreffend votierten 52 für Partei A, 39 für B und 9 für C. Man berechne und skizziere einen (gemeinsamen) asymptotischen 95% Konfidenzbereich für die Anteile θ_A, θ_B der Parteien. (Multinomialverteilung mit Konfidenzbereich aus Beispiel 35)

Man berechne auch separate Konfidenzintervalle für die Anteile der Parteien.