7. Übung aus Maß- und Wahrscheinlichkeitstheorie WS 2015

- 1. Beweisen Sie, dass jede rechtsstetige Funktion $f \in \mathcal{BV}(a,b)$ die Differenz von zwei rechtsstetigen, monoton wachsenden Funktionen ist.
- 2. Für $f: [a,b] \to \mathbb{R}$ beweise man die folgenden Aussagen:
 - (a) Stetige Funktionen müssen nicht von beschränkter Variation sein.
 - (b) Stetige, monotone Funktionen müssen nicht absolut stetig sein.
 - (c) Gibt es ein $C \in \mathbb{R}^+$ mit $|f(x) f(y)| \le C |x y|$, $\forall x, y \in [a, b]$, so ist f absolut stetig.
 - (d) Wenn f auf [a,b] stetig ist und die Ableitung f' von f auf (a,b) existiert und beschränkt ist, ist f absolut stetig.
 - (e) Wenn f in jedem Punkt von (a,b) differenzierbar ist, muss f nicht absolut stetig sein.
- 3. Man nennt einen Punkt $x\in A\subseteq \mathbb{R}$ einen Dichtepunkt von A, wenn gilt $\lim_{h\searrow 0}\frac{\lambda^*(A\cap(x-h,x+h))}{2\,h}=1$ (λ^* ist das äußere Lebesgue-Maß). Man beweise, dass jedes $A\in\mathfrak{L}$ bis auf eine λ -Nullmenge nur aus Dichtepunkten besteht.

Hinweis: Man kann o.E.d.A. annehmen $A\subseteq [a\,,b]\,,\;a\,,b\in\mathbb{R}$ (warum?) $\lambda(A\cap [a,x])=\int_{[a,x]}\mathbb{1}_A\,d\lambda\,.$

4. Man zeige, dass jedes $A \subseteq \mathbb{R}$ bis auf eine λ -Nullmenge nur aus Dichtepunkten besteht.

Hinweis: Zu jedem $A \subseteq \mathbb{R}$ gibt es ein $A \subseteq B \in \mathfrak{L}$ mit $\lambda^*(A) = \lambda(B)$.

5. Ist $(\Omega, \mathfrak{S}, \mu)$ ein Maßraum und sind p_1, \ldots, p_n Zahlen aus $(1, \infty)$ mit $\sum_{i=1}^n \frac{1}{p_i} = 1$, so zeige man, dass für alle messbaren $f_i, \ 1 \leq i \leq n$ gilt

$$\left\| \prod_{i=1}^{n} f_i \right\|_{1} \le \prod_{i=1}^{n} \|f_i\|_{p_i} \,. \tag{1}$$

- 6. Man zeige:
 - (a) Ist φ strikt konvex, so folgt aus $\mathbb{E}\varphi(X)=\varphi(\mathbb{E}X)$, also Gleichheit in der Jensen'schen Ungleichung, $X=\mathbb{E}X$ P-fs.

(b) Ist $P:=(p_1,\ldots,p_m)$ ein Wahrscheinlichkeitsmaß auf $\{\omega_1,\ldots,\omega_m\}$, so gilt für jedes Maß $Q:=(q_1,\ldots,q_m)$ mit $\sum\limits_{i=1}^m q_i \leq 1$

$$H(P) := \sum_{i=1}^{m} p_i \log \frac{1}{p_i} \le \sum_{i=1}^{m} p_i \log \frac{1}{q_i}.$$

- (c) $H(P) \leq \log m$.
- (d) $D(P|Q) := \sum_{i=1}^{m} p_i \log \frac{p_i}{q_i} = 0 \implies P = Q.$
- 7. Man suche einen σ -endlichen Maßraum mit $\mathcal{L}_p \subseteq \mathcal{L}_q \ \forall \ 1 \leq p \leq q \leq \infty.$