3. Übung Wahrscheinlichkeit und stochastische Prozesse

- 1. In einer Urne befinden sich je drei schwarze, weiße und graue Kugeln. Es werden drei Kugeln ohne Zurücklegen gezogen, X sei die Anzahl der weißen, Y die der schwarzen Kugeln. Bestimmen Sie die gemeinsame Verteilung von X und Y, die Randverteilungen und ihre Erwartungswerte.
- 2. Die gemeinsame Dichte von X und Y ist gegeben durch

$$f(x,y) = \left\{ \begin{matrix} cx/y & \text{für } 0 < x \leq y \leq 1, \\ 0 & \text{sonst.} \end{matrix} \right.$$

Bestimmen Sie c, die Randdichten und Erwartungswerte (hier kann es vorteilhaft sein, $\mathbb{E}(X)$ mithilfe des Satzes vom unachtsamen Statistiker als $\int \int x f(x,y)$ zu berechnen).

- 3. Bestimmen Sie im vorigen Beispiel die bedingten Dichten von $f_{X|Y}(x|Y=y)$ und $f_{Y|X}(y|X=x)$.
- 4. Die Poissonverteilung mit Parameter $\lambda>0$ ist durch die Wahrscheinlichkeitsfunktion

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!} (x = 0, 1, \ldots)$$

gegeben. Bestimmen Sie ihren Erwartungswert.

5. Bestimmen Sie den Erwartungswert der diskreten Gleichverteilung

$$p_X(x) = \frac{1}{b-a+1}, \ x = a, a+1, \dots, b$$

und den Erwartungswert von X^2 .

- 6. X hat die Dichte $f(x) = xe^{-x}$ ($x \ge 0$). Überprüfen Sie, dass f eine Dichte ist, und bestimmen Sie die Verteilungsfunktion und den Erwartungswert von X.
- 7. X_1, \ldots, X_n seien unabhängig mit der Verteilungsfunktion $F_X, U = \max(X_1, \ldots, X_n)$ und $V = \min(X_1, \ldots, X_n)$. Zeigen Sie:

$$F_U(x) = F_X(x)^n$$
, $F_V(X) = 1 - (1 - F(x))^n$.

Bestimmen Sie die Erwartungswerte von U und V, wenn die X_i auf [0,1] stetig gleichverteilt sind $(f_X(x) = 1 \ (0 \le x \le 1))$.