Höhere WAHRSCHEINLICHKEITSTHEORIE

http://mstoch.tuwien.ac.at/lv-guide

VO: S. Källblad / K. Felsenstein

WS 2017

ÜBUNGSBLATT 3

13) Der Prozess $X_t, t \geq 0$ sei zur Filtration \mathcal{F}_t adaptiert. Für alle beschränkten Stoppzeiten τ gelte

$$\mathbb{E}|X_{\tau}| < \infty$$
 und $EX_{\tau} = \mathbf{E}X_0$.

Man zeige, dass dann X_t ein Martingal ist.

Hinweis: Für $s \leq t$ definiere man $\tau := s \mathbbm{1}_A \ + \ t \mathbbm{1}_{A^c}$ bei $A \in \mathcal{F}_s$.

- 14) Man suche eine Funktionenfolge (f_n) auf einem endlichen Maßraum $(\Omega, \mathfrak{S}, \mu)$, die gleichmäßig (oder gleichgradig) integrierbar ist, zu der es aber keine integrierbare Funktion g mit $g \ge |f_n|$ μ -fü $\forall n \in \mathbb{N}$ gibt.
- 15) Man beweise, dass $(X_n \vee Y_n, \mathfrak{S}_n)$ ein Submartingal ist, wenn (X_n, \mathfrak{S}_n) und (Y_n, \mathfrak{S}_n) Submartingale sind.
- 16) Sind \mathcal{F}, \mathcal{G} Familien mesbarer Funktionen auf einem Maßraum $(\Omega, \mathfrak{S}, \mu)$, so zeige man:
 - a) $\mathcal{F} \subseteq \mathcal{L}_1 \wedge |\mathcal{F}| < \infty \Rightarrow \mathcal{F}$ ist gleichmäßig integrierbar,
 - b) \mathcal{G} ist gleichmäßig integrierbar, wenn \mathcal{F} gleichmäßig integrierbar ist und $\forall g \in \mathcal{G} \quad \exists f \in \mathcal{F}: |g| \leq |f| \quad \mu$ -fü,
- 17) Man zeige, dass für Familien gleichgradig integrierbarer Familien mesbarer Funktionen \mathcal{F}, \mathcal{G} auch $\{f \lor g, f \pm g : f \in \mathcal{F}, g \in \mathcal{G}\}$ gleichmäßig integrierbar ist.
- 18) Die monoton wachsende Funktion $g: \mathbb{R}^+ \to \mathbb{R}^+$ erfüllt $\lim_{x \to \infty} \frac{g(x)}{x} = \infty$. Wenn eine Folge von Zufallsvariablen X_n

$$\sup_{n} \mathbb{E} g(|X_n|) < \infty$$

erfüllt, dann ist X_n gleichgradig integrierbar.