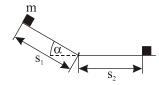
- **1.** Ein **Bungee-Jumper** möchte die seiner Körpermasse m = 75 kg entsprechende **Länge des Bungee-Seils** berechnen. Die Höhe der Brücke sei h = 100 m. Dem Mutigen sei bekannt, daß die Kraft, die erforderlich ist, um **1** m des (homogenen) Seils auf die *doppelte* Länge auszudehnen, genau seinem *Körpergewicht* entspricht.
 - a) Wie ändert sich die **Federkonstante** des Seils in Abhängigkeit von seiner Länge?
 - **b)** Welche **Länge** *l* wäre dem Springer zu empfehlen, wenn er möglichst knapp über dem Boden abgebremst werden will? (*Lösung: l* = 26,79 m)
 - **c)** Wann treten die **größten Beschleunigungskräfte** auf und wie groß sind sie im Vergleich zur Erdbeschleunigung *g*? (*Lösung*: $a = \sqrt{3} g$)

<u>Hinweis</u>: Um auf der sicheren Seite zu sein, vernachlässigen Sie die Abbremsung durch die Luftreibung. Verwenden Sie den Energiesatz!

- **2.** Ein **homogener Quader** wird auf einer unter **15°** geneigten Betonfläche hinauf und hinunter gezogen. Die Kraft, die notwendig ist, um den Körper nach oben zu ziehen, ist sechsmal so groß wie diejenige, die ihn abwärts zu bewegen vermag.
 - → Wie groß ist der **Haftreibungskoeffizient** μ zwischen Ebene und Körper? (*Lösung*: μ = 0,375)
- **3.** Ein **Körper der Masse** m = 10 kg gleitet auf einer um $\alpha = 30^{\circ}$ geneigten Ebene die Strecke $s_1 = 2,5$ m abwärts und kommt auf einer anschließenden waagrechten Strecke zur Ruhe (siehe Abbildung 3). Die Gleitreibungszahl ist $\mu = 0,2$.
 - a) Wie groß ist die **Geschwindigkeit** v_1 des Körpers am Ende der geneigten Ebene? (*Lösung*: $v_1 = 4 \text{ ms}^{-1}$)
 - **b)** In welcher **Zeit** t_1 gleitet der Körper die geneigte Ebene hinab? (*Lösung*: $t_1 = 1,25$ s)
 - c) Nach welcher **Strecke** s_2 kommt der Körper auf der Waagrechten zur Ruhe? (*Lösung*: $s_2 = 4,08 \text{ m}$)



- **4. Freier Fall mit Reibung:** Im Falle einer **laminaren Strömung** ist die Reibungskraft \vec{F}_R proportional und entgegengesetzt zur Richtung der Geschwindigkeit \vec{v} eines in einem Medium bewegten Körpers (**Stokes'sche Reibung**). Im Falle einer **turbulenten Strömung** ist die Reibungskraft \vec{F}_R ebenfalls entgegengesetzt zur Richtung von \vec{v} , ihr Betrag ist allerdings proportional zu v^2 (**Newton'sche Reibung**). Die Proportionalitätskonstante für Stokes'sche Reibung sei β, jene für Newton'sche Reibung sei γ.
 - a) Für einen im homogenen Schwerefeld der Erde fallenden Körper der Masse *m* skizzieren Sie Beträge und Richtungen aller auftretenden Kräfte sowie der Fallgeschwindigkeit. Formulieren Sie die zu den beiden Fällen gehörigen Bewegungsgleichungen in vektorieller Form. Die Fallrichtung liege entlang der *y*-Achse, die y-Achse zeige nach oben.

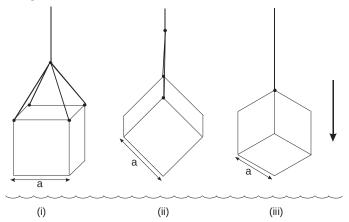
(<u>Lösung</u>: Stokes: $m \cdot \dot{v}_y = -m \cdot g - \beta \cdot v_y$; Newton: $m \cdot \dot{v}_y = -m \cdot g + \gamma \cdot v_y^2$)

- b) Ermitteln Sie durch Lösen der Bewegungsgleichung für den Fall der Stokes'schen Reibung die Geschwindigkeit des frei fallenden Körpers in Abhängigkeit von der Zeit, v(t). Die Anfangsgeschwindigkeit sei v_0 . (Lösung: $v(t) = -\frac{m \cdot g}{\beta} \cdot \left(1 e^{-\frac{\beta}{m}t}\right) + v_0 \cdot e^{-\frac{\beta}{m}t}$)
- c) Ermitteln Sie die Endgeschwindigkeiten v_E des frei fallenden Körpers für die beiden Fälle.

(Lösung: Stokes:
$$v_e = -\frac{m \cdot g}{\beta}$$
; Newton: $v_e = -\sqrt{\frac{m \cdot g}{\gamma}}$)

- **5. Eintauchtiefen**: eine **unbefüllte** würfelförmige Holzkiste (Kantenlänge außen a = 1 m, Wandstärke d = 5 cm, Dichte des Holzes $\rho_H = 0.6$ g/cm³) ist in 3 verschiedenen **Konfigurationen** befestigt und wird bei Windstille in einen großen See (Dichte von Wasser: $\rho_W = 1$ g/cm³) abgesenkt. Die unterschiedlichen Befestigungsarten seien:
 - (i) an den **4 Eckpunkten einer Seitenfläche**, d. h. die wassernächste Seitenfläche ist parallel zur Wasseroberfläche
 - (ii) an den beiden Eckpunkten einer Würfelkante, d. h. die den Aufhängepunkten gegenüberliegende Würfelkante ist Parallel zur Wasseroberfläche
 - (iii) an einem Eckpunkt, d. h. die vom Aufhängungspunkt zum wassernächsten Eckpunkt verlaufende Raumdiagonale ist normal zur Wasseroberfläche.

Siehe dazu auch die folgende Skizze:



Während des Eintauchens ins Wasser sei die **Lage der Kiste als fix angenommen**. Berechnen Sie zunächst allgemein und dann mit den gegebenen Daten **unter Vernachlässigung der Dichte von Luft**

- a) die mittlere Dichte $\overline{\rho}$ der Kiste sowie deren Masse m_K . (*Lösung*: $\overline{\rho} = 0.1626 \text{ g/cm}^3$)
- b) die Eintauchtiefe *T* und die Lage des Schwerpunktes *S* relativ zur Wasseroberfläche bei der Eintauchtiefe für die Situationen (i) (iii).
 (<u>Lösung</u>: *T* = (i): 16,26 cm, (ii): 40,32 cm, (iii): 57,26 cm)
- c) Die Arbeit W, die aufgewendet werden muß, um die Kiste wieder senkrecht vollständig aus dem Wasser zu ziehen für die Situationen (i) (iii).
 (<u>Lösung</u>: W = (i): 129,68 J, (ii): 428,8 J, (iii): 685,04 J)
- **6. Schwimmender Wasserball:** ein Wasserball aus **PVC** (Dichte $\rho_{PVC} = 1,4$ g/cm³) habe im aufgeblasenen Zustand einen **Aussendurchmesser von** $d_{Ball} = 40$ cm. und eine Wandstärke von $d_{PVC} = 0,8$ mm. Der **Luftdruck im Ball** beträgt 2 bar bei 25°C.
 - a) Man berechne die **mittlere Dichte** $\overline{\rho}$ des luftgefüllten Balles. (*Lösung*: $\overline{\rho} = 0.01907 \text{ g/cm}^3$)
 - b) Wie tief taucht der Ball in Wasser ein, wenn nur die Schwerkraft auf ihn wirkt und der Auftrieb der Luft vernachlässigt wird? (*Lösung*: *T* = 3,28 cm)
 - c) Welche **Kraft** ist nötig um den schwimmenden Ball **vollständig senkrecht unter Wasser zu drücken** und welche **Arbeit** muß man dazu verrichten? (*Lösung*: F = 322,47 N, W = 63,38 J)

Hinweis: Die Dichte von Luft beträgt bei 25°C und p=1 bar $\rho_L=1,184$ kg/m³. Beim Eintauchen ins Wasser verforme sich der Ball nicht. Die Dichte von Wasser kann mit $\rho_W=1$ g/cm³ angenommen werden. Der Auftrieb der Luft möge vernachlässigt werden.