
- **1. Reflexionsgesetz und Extremalprinzip**: Leiten Sie das Reflexionsgesetz für einen Lichtstrahl mittels des Fermat'schen Prinzips her.
- **2.** Ein **Teleobjektiv** besteht aus einer Sammellinse L_1 mit $f_1 = 30$ mm und einer Zerstreuungslinse L_2 mit $f_2 = -7.5$ mm, die im Abstand d = 24 mm voneinander angebracht sind.
 - a) Wie groß ist die Brennweite f des Teleobjektivs? (<u>Lösung</u>: f = 150 mm)
 - **b)** Wie groß ist der Abstand l zwischen L_1 und dem Brennpunkt F' des Teleobjektivs? (*Lösung*: l = 54 mm)
- **3.** Die Brennweite eines **Mikroskopobjektives** beträgt $f_1 = 0.3$ cm, die des Okulars $f_2 = 3$ cm. Die Tubuslänge beträgt s = 16 cm.
 - → Man ermittle, in welchem Abstand d vor dem Objektiv sich ein Gegenstand befinden muß, damit das durch das Mikroskop beobachtende Auge das Bild des Gegenstandes in der deutlichen Sehweite $L_0 = 25$ cm wahrnimmt. ($\underline{L\ddot{o}sung}$: d = 3,07 mm)
- **4.** Planparallele Glasplatte: Ein Lichtstrahl trifft unter dem Einfallswinkel α auf eine planparallele Glasplatte der Dicke d, deren Brechungsindex n ist und welche sich in Luft ($n_L = 1$) befindet.
 - a) Man skizziere den Strahlengang und beschrifte die einzelnen auftretenden Winkel. Welcher Zusammenhang besteht zwischen den Winkeln?
 - b) Man leite einen allgemeinen Ausdruck für den Normalabstand ΔS ab, um den der auf der anderen Seite der Glasplatte austretende Lichtstrahl gegenüber dem einfallenden Strahl parallelverschoben ist.
 - c) Wie groß ist ΔS , wenn n = 1.5, d = 10 cm und $\alpha = 70^{\circ}$ sind?
- **5. Matrixmethoden**: Bestimmen Sie die Transformationsmatrix **M** von
 - a) einer dicken Sammellinse mit den Krümmungsradien der Linsenflächen R1 und R2
 - b) einer dicken Zerstreuungslinse mit den Krümmungsradien der Linsenflächen R1 und R2

Der Lichtstrahl falle von Links auf die erste Grenzfläche ein, der Brechungsindex der Umgebung sei n_1 , jener der Linse n_2 .

<u>Hinweis:</u> Die Krümmungsradien seien so groß, dass der Strahlweg in der Linse durch deren Dicke D angenähert werden kann. Die Lösung kann der Literatur entnommen werden.

6. Reflexionsminderung: Eine Glasplatte (Brechungsindex n_2), welche senkrecht mit Licht der Vakuumwellenlänge λ_0 bestrahlt wird, soll mit einer für diese Wellenlänge optimierten reflexionsmindernden Schicht (Brechungsindex n_1 , $n_1 < n_2$) versehen werden. Das gesamte System befinde sich in Luft (Brechungsindex n_0 , $n_0 < n_1 < n_2$, siehe Skizze).

- a) Wie groß sind **Frequenz**, **Wellenlänge und Phasengeschwindigkeit** der elektromagnetischen Strahlung in den drei Medien?
- b) Wie dick muss die Schicht sein, damit die an den Grenzflächen Luft/Schicht und Schicht/Glas reflektierten Teilstrahlen an Luft einen Gangunterschied von $\lambda_{Luft}/2$ aufweisen (vernachlässigen Sie Mehrfachreflexionen)? Zeichnen Sie die reflektierten Teilwellen (analog zur schematisch dargestellten einfallenden Welle) in die Skizze ein.
- c) Wie muss der **Brechungsindex** n_1 der **Schicht** gewählt werden, damit die an den Grenzflächen reflektierten Teilwellen auch eine **gleich große Amplitude** aufweisen und somit die vollständige Auslöschung der reflektierten Teilstrahlen eintritt?
- d) Welche der in den Punkten b) und c) hergeleiteten Bedingungen ist technisch leicht realisierbar, welche schwierig.