7. Übung zur Quantenmechanik I

Wintersemester 2013/2014

TUTORIUM: Freitag, 13.12.2013

15. Messung des Drehimpulses

1+2+2=5 Punkte

Der Zustand eines Teilchens sei durch folgende Linearkombination der Drehimpulseigenzustände $|j,m\rangle$ (j>1) der z-Komponente \hat{J}_z des Drehimpulsoperators $\hat{\mathbf{J}}=(\hat{J}_x,\hat{J}_y,\hat{J}_z)$ gegeben:

$$|\psi\rangle = \frac{1}{7} \left(3|\ j, -j+1\rangle - 6i|j, -j+2\rangle + 2|j, j\rangle \right).$$

- a) Welche möglichen Messwerte für $\hat{\mathbf{J}}^2$ und \hat{J}_z treten mit welchen Wahrscheinlichkeiten auf?
- **b)** Berechnen Sie die Erwartungswerte $\langle \hat{\mathbf{J}}^2 \rangle$, $\langle \hat{J}_x \rangle$, $\langle \hat{J}_y \rangle$ und $\langle \hat{J}_z \rangle$. (Hinweis: Drücken Sie \hat{J}_x und \hat{J}_y durch die Leiteroperatoren \hat{J}^+ und \hat{J}^- aus.)
- c) Wie groß sind die Unschärfen (Standardabweichungen) $\Delta \hat{\mathbf{J}}^2$ und $\Delta \hat{J}_z$?

16. Dreidimensionaler Harmonischer Oszillator

2+1+2=5 Punkte

Betrachten Sie den Hamiltonoperator des isotropen dreidimensionalen harmonischen Oszillators:

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + \frac{1}{2}m\omega^2\hat{\mathbf{r}}^2,$$

wobei $\hat{\mathbf{p}} = (\hat{p}_x, \hat{p}_y, \hat{p}_z)$ und $\hat{\mathbf{r}} = (\hat{x}, \hat{y}, \hat{z})$.

- a) Drücken Sie den Bahndrehimpulsoperator in z-Richtung, \hat{L}_z , sowie den Gesamtdrehimpulsoperator, $\hat{\mathbf{L}}^2$, durch die Erzeugungs- und Vernichtungsoperatoren \hat{a}_i^+ und \hat{a}_i (mit i=x,y,z) aus
- b) Betrachten Sie den Energieeigenraum zum Energieeigenwert $E = \frac{5\hbar\omega}{2}$. Durch welche Eigenvektoren $|n_x, n_y, n_z\rangle$ der Teilchenzahloperatoren $\hat{n}_x, \hat{n}_y, \hat{n}_z$ wird er aufgespannt? Bestimmen Sie die entsprechende Basis in der \hat{L}_z diagonal ist. Geben Sie die möglichen Messwerte für den Gesamtdrehimpuls $\hat{\mathbf{L}}^2$ für einen beliebigen Vektor aus diesem Energieeigenraum an.
- c) Betrachten Sie nun den Energieeigenraum zum Einergieeigenwert $E = \frac{7\hbar\omega}{2}$ und geben Sie alle Eigenvektoren $|n_x, n_y, n_z\rangle$ an. Diagonalisieren Sie den Gesamtdrehimpulsoperator $\hat{\mathbf{L}}^2$ in diesem Eigenraum und geben Sie seine möglichen Messwerte für einen beliebigen Zustand aus diesem Energieeigenraum an. (Hinweis: Es ist nicht notwendig eine Matrix mit mehr als drei Dimensionen zu diagonalisieren.)