4. Übung zur Quantenmechanik I

Wintersemester 2021/2022

TUTORIUM: Freitag, 5.11.2021.

10. Translationsoperator

2+1+1=4 Punkte

Gegeben sei der Operator $T = e^{-\lambda(a-a^{\dagger})}$, wobei a und a^{\dagger} Vernichtungs- und Erzeugungsoperatoren sind. Die Exponentialfunktion eines Operators ist hierbei durch die entsprechende Reihenentwicklung definiert.

- a) Ist der Operator T hermitesch? Ist T unitär, d.h. gilt $TT^{\dagger} = T^{\dagger}T = 1$? Transformieren Sie nun die Erzeugungs- und Vernichtungsoperatoren mit T, d.h. bestimmen Sie $\widetilde{a} = TaT^{\dagger}$ und $\widetilde{a}^{\dagger} = Ta^{\dagger}T^{\dagger}$.
- b) Berechnen Sie daraus nun den transformierten Hamiltonoperator $\widetilde{H} = TH_0T^{\dagger}$, wobei H_0 der Hamiltonoperator des harmonischen Oszillators ist. Für welches λ ergibt sich der Hamiltonoperator aus Aufgabe 9(a)?
- c) Drücken Sie nun die Erzeuger und Vernichter im Exponenten von T durch den Impulsoperator aus. Für welches ξ finden Sie $T = \exp(-\frac{i}{\hbar}\xi p)$? Was ergibt sich, wenn man den Operator T auf eine Wellenfunktion in Ortsdarstellung anwendet: $T\psi(x)$? Warum nennt man T auch den Translationsoperator? Bringen Sie dieses Ergebnis in Verbindung mit Aufgabe 9(b).

Hinweis: Verschwinden für zwei Operatoren A, B die Kommutatoren [A, C] und [B, C] wobei C = [A, B], so gelten die folgenden Identitäten:

$$[A, F(B)] = [A, B]F'(B)$$

$$e^{A}e^{B} = e^{A+B}e^{\frac{1}{2}[A,B]}$$
(2)

$$e^{A}e^{B} = e^{A+B}e^{\frac{1}{2}[A,B]} \tag{2}$$

wobei $F'(B) = \frac{d}{dB}F(B)$ ist.

11. Kohärente Zustände

 $1+1+1=3 \ Punkte$

In der Vorlesung haben Sie die – als kohärente Zustände bekannten – Eigenfunktionen $\varphi_{\alpha}(x)$ des Vernichtungsoperators a im Kontext des harmonischen Oszillators kennen gelernt: $a\varphi_{\alpha}(x) = \alpha\varphi_{\alpha}(x)$, $\alpha \in \mathbb{C}$.

- a) Zeigen Sie, dass kohärente Zustände nicht orthogonal zueinander sind, d.h. bestimmen Sie das Skalarprodukt $(\varphi_{\alpha}, \varphi_{\beta})$.
- b) Zeigen Sie, dass die Eigenzustände des harmonischen Oszillators ψ_n orthogonal zueinander sind, d.h. bestimmen Sie (ψ_n, ψ_m) Hinweis: Benutzen Sie, dass $\psi_n \sim (a^{\dagger})^n \psi_0$
- c) Berechnen Sie die Erwartungswerte für die Varianz $\Delta x = \langle x^2 \rangle \langle x \rangle^2$ für kohärente Zustände φ_{α} und für Eigenzustände des Harmonischen Oszillators ψ_{n} .

12. Zweidimensionaler Potenzialtopf

 $1+1+1=3 \ Punkte$

Betrachten Sie einen zweidimensionalen Potentialtopf mit dem Potential

$$V(x,y) = \begin{cases} 0 & 0 \le x \le a, \quad 0 \le y \le b \\ \infty & \text{sonst.} \end{cases}$$

- a) Finden Sie die Eigenzustände der stationären Schrödingergleichung für dieses Problem sowie die dazugehörigen Eigenenergien. Ist der Grundzustand entartet? Sind der erste und der zweite angeregte Zustand entartet? Wie häufig?
- b) Zum Zeitpunkt t = 0 befindet sich das System im Zustand

$$\psi(x, y, t = 0) = \begin{cases} A \sin\left(\frac{2\pi}{a}x\right) \sin\left(\frac{\pi}{b}y\right) & 0 \le x \le a, \quad 0 \le y \le b \\ 0 & \text{sonst.} \end{cases}$$

Bestimmen Sie die Normierungskonstante A und die Zeitentwicklung des Zustandes, also $\psi(x,y,t)$.

c) Berechnen Sie die Erwartungswerte $\langle y(t) \rangle$, $\langle p_x(t) \rangle$ für den obigen Zustand $\psi(x,y,t)$.