9. Übung zur Quantenmechanik I

Wintersemester 2021/2022

TUTORIUM: Freitag, 17.12.2021.

22. Zeitentwicklung in der Drehimpulseigenbasis1+1+1+1=5 Punkte

Ein Teilchen sei durch folgende Linearkombination der Drehimpulseigenzustände $|j,m\rangle$ mit j>1 zur Zeit t=0 beschrieben:

$$|\psi(t=0)\rangle = \frac{1}{3}(2|j, -j+2\rangle - 2i|j, -j+1\rangle + |j, -j\rangle)$$
 (1)

- a) Welche möglichen Messwerte haben dann J^2 und J_z ? Hängen die Resultate der Messungen von J^2 und J_z an diesem Teilchen davon ab, welche Observable zuerst gemessen wird?
- b) Berechnen Sie die Erwartungswerte $\langle J^2 \rangle$ und $\langle J_z \rangle$. Wie gross sind die Unschärfen ΔJ^2 und ΔJ_z ?
- c) Berechnen Sie die Zeitentwicklung des obigen Zustands, d.h. $|\psi(t)\rangle$, mit dem folgenden Hamilton-Operator:

$$H = \frac{J^2}{2M} + \mu B J_z. \tag{2}$$

- d) Berechnen Sie den zeitabhängigen Erwartungswert $\langle J_y(t) \rangle$ von $J_y = -\frac{1}{2}i(J_+ J_-)$ in dem obigen Zustand $|\psi(t)\rangle$
- e) Zum Zeitpunkt $t = t_1$ wurde J_z gemessen mit dem Ergebnis $-j\hbar$. Danach, zu einem späteren Zeitpunkt $t = t_2$, wird J^2 gemessen. Geben Sie die Zeitentwicklung des kollabierten Zustands für $t > t_2$ an.

23. Zentralpotential

 $1+2+1+1=5 \ Punkte$

Das Potential des isotropen dreidimensionalen harmonischen Oszillators lautet

$$V(\mathbf{r}) = \frac{1}{2}m\omega^2 (x^2 + y^2 + z^2).$$
 (3)

a) Bestimmen Sie die Energieeigenwerte und -funktionen eines Teilchens der Masse m in selbigem Potential mittels Separation in kartesischen Koordinaten x, y, z.

- b) Offensichtlich ist $V(\mathbf{r}) = V(r)$ ein radialsymmetrisches Problem und kann daher mit den Methoden für Zentralpotentiale behandelt werden. Bestimmen Sie nun die Eigenwerte und Eigenfunktionen mittels Separation in Kugelkoordinaten r, φ, θ .

 Hinweis: Gehen Sie hierbei analog zu Vorlesungen über das Coulomb-Potential/das Wasserstoffatom vor: Potenzreihenansatz für die Radialfunktion, Bestimmung der Entwicklungskoeffizienten durch Rekursion, Analyse des asymptotischen Verhaltens, Quantisierung durch Abbruchbedingung der Reihe.
- c) Wie gross ist der Entartungsgrad der Energieeigenwerte?
- d) Vergleichen Sie die Ergebnisse von a) und b) für die beiden niedrigsten Energieeigenwerte. Welcher Zusammenhang ergibt sich dabei für die nach a) und b) berechneten Eigenfunktionen?