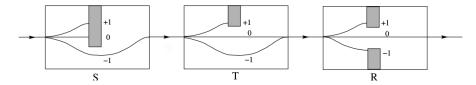
Aufgabenblatt 3

1 Stern-Gerlach-Apparate

Ein unpolarisierter Strahl von neutralen Spin-1-Teilchen falle in positiver y-Richtung auf die in der Abbildung dargestellte Anordnung von gekoppelten Stern-Gerlach-Apparaten ein.



Dabei besitzen die Stern-Gerlach-Apparate S und R einen Feldgradienten in positive x-Richtung. Der Feldgradient des dazwischenliegenden Spin-Filters T habe einen Feldgradienten in z-Richtung. Nehmen Sie nun an, dass N (Teilchen pro Sekunde) die Intensität des Strahls sei, welcher auf den S-Apparat einfällt.

- a) Welche Dichtematrix repräsentiert den Strahl jeweils nach dem S, T und R-Apparat?
- b) Welche Intensitäten hat der Strahl nach den jeweiligen Apparaten?
- c) Wie müssen Sie den Stern-Gerlach-Apparat T verändern, so dass die Intensität nach dem Stern-Gerlach-Apparat R verschwindet?

$$(ab) + (c) = 2 Kreuze$$

2 Dichteoperator des thermischen Gleichgewichts

Betrachten Sie ein Spin-1/2-Teilchen in einem homogenen Magnetfeld $\vec{B} = B \hat{e}_z$, das bei einer Temperatur T durch den Dichteoperator $\hat{\rho}(T) = \text{Tr}\left(e^{-\beta\hat{H}}\right)^{-1}e^{-\beta\hat{H}}$ beschrieben wird, wobei $\beta = (k_B T)^{-1}$ gilt.

- a) Überlegen Sie zunächst welcher Zustand für den Spin energetisch am günstigsten ist. Wie groß sind daher die Besetzungswahrscheinlichkeiten P_{\uparrow} (für Spin-up) und P_{\downarrow} (für Spin-down) im Fall T=0?
- b) Wie lauten die Besetzungswahrscheinlichkeiten für eine endliche Temperatur $T>0\ensuremath{?}$
- c) Berechnen Sie im nächsten Schritt den Erwartungswert $\langle \hat{\mu}_z \rangle$ des magnetischen Moments in z-Richtung. Welche Magnetisierung $\langle \hat{M} \rangle$ folgt daraus bei einer Temperatur T? Betrachten Sie dafür ein Ensemble von N (nicht-wechselwirkenden) Spins.
- d) Wie verhält sich die Magnetisierung in den Grenzfällen $T \to 0$ und $T \to \infty$?

e) Berechnen Sie die Unschärfe der Magnetisierung als Funktion der Temperatur T und stellen Sie diese graphisch dar.

$$(ab) + (cde) = 2 Kreuze$$

3 Auswahlregeln

Das Valenzelektron eines Atoms werde durch Absorption eines Photons mit Wellenzahl \vec{k} und mit Polarisationsvektor $\vec{e} \perp \vec{k}$ vom Zustand $|i\rangle \equiv |n\,l\,m_l\,s\,m_s\rangle$ in einen angeregten Zustand $|f\rangle \equiv |n'\,l'\,m'_l\,s\,m'_s\rangle$ gehoben. Nehmen Sie nun an, bei dem entsprechenden Anregungsprozess handle es sich um einen elektrischen Dipolübergang. In diesem Fall wird die Übergangswahrscheinlichkeit durch folgendes Matrixelement mit dem Dipoloperator \vec{D} bestimmt: $|\langle f|\vec{e}\cdot\vec{D}|i\rangle|^2$. Zeigen Sie auf dieser Basis, dass für die in Frage kommenden Dipolübergänge folgende Auswahlregeln gelten: $\Delta l \equiv l' - l = \pm 1$, $\Delta m_l \equiv m'_l - m_l = 0, \pm 1$, $\Delta m_s \equiv m'_s - m_s = 0$.

Hinweis:

Verwenden Sie für Ihre Ableitung das Wigner-Eckart-Theorem,

$$\langle \alpha' j' m' | \hat{T}_q^k | \alpha j m \rangle = \text{const.} \cdot \langle j, m; k, q | j, k, j', m' \rangle$$
 (1)

sowie Überlegungen zur Parität der auftretenden Wellenfunktionen. Weiters gilt folgende Identität für das Skalarprodukt zweier Vektoroperatoren:

$$\vec{A} \cdot \vec{B} = \sum_{i=1}^{3} \hat{A}_i \hat{B}_i = \sum_{q=-1}^{1} (-1)^q \hat{A}_q^1 \hat{B}_{-q}^1$$
 (2)

(wobei \hat{A}_q^1, \hat{B}_q^1 die sphärischen Komponenten der Vektoroperatoren sind).

1 Kreuz