Daniel Grumiller April 26th 2010

Black Holes II — Exercise sheet 6

(16.1)

(16.2)

(16.3)

Higher curvature theories of gravity
Show that a non-linear gravity theory in any dimension D > 2 with an
action
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is equivalent to the following class of dilaton gravity models:
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Derive a relation between the exponents + and 7.

[Note: This result shows the equivalence of theories with f(R) inter-
actions to certain dilaton gravity models. The latter are also known
as scalar-tensor theories, Jordan-Brans—Dicke theories or quintessence
models. Both models have been used a lot in cosmology in the past 1.5
decades.]

Field equations for spherically symmetric charged BHs
Requiring spherical symmetry at the level of the action reduces the
Einstein—Hilbert—-Maxwell action in 4D to a specific dilaton gravity-
Maxwell action in 2D (to reduce clutter we set k = 1):
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Derive the equations of motion for metric g, dilaton X and gauge-field
A, (asusual F,, =V,A, -V, A, =0,A,—0,A,). Solve for F,, using
the field equations for A,. Interpret this result from a 4D perspective.
What is the physical role of the constant of motion appearing in the

solution of the field equations for A,7

Deriving the Reissner-Nordstrom solution

Take the equations of motion derived in (16.2) and find their most
general solution for the metric g, non-constant dilaton X and gauge-
field A,. Oxidize your result to 4D and write down the line-element in
Schwarzschild coordinates. This line-element is the Reissner-Nordstrom

solution. Finally, find all constant dilaton vacua. Are these vacuum
geometries AdS, x S?, Minkowski x.5? or dS, x S??

These exercises are due on May 3rd 2010.



Hints:

e Start with the dilaton gravity formulation and eliminate the dilaton X
in terms of curvature R by means of its own equation of motion.

e The field equations for dilaton and metric can be derived essentially
in the same way as for exercise (14.2) — see the hints there. For
consistency your field equations in the limit A, — 0 must coincide
with the ones derived in (14.2) for the special case U(X) = —5% and
V(X) = —%. The field equation for the gauge field is straightforward.

You should obtain
V(X F#) = e 9, (X f) = 0

where the first equality exploits the fact that any anti-symmetric tensor
FH in 2D can be written as F* = ¢ f, where f is a scalar field
and " the e-tensor. It is straightforward to solve the field equations
above for f in terms of X and an integration constant. Regarding the
4D interpretation remember how the dilaton field X is related to the
standard radial coordinate r and compare with the Coulomb solution.

e If you did not do exercise (16.2) then you need to know the field equa-
tions. The one for A, is provided in the hint above. The one for the
dilaton reads
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where F? = F,, F*". Variation with respect to the metric yields
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In the last equality I have used F),, = €, f as well as the 2D identity
€40€%y = g (for Minkowski signature). Exploit now the fact that you
can introduce an effective 2D dilaton gravity model with potentials
off 1 off 1 ¢’
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where ¢ is the constant of motion appearing in the dual field strength
f = q/(2X). This trick allows you to take advantage of the results
derived in the lectures for general 2D dilaton gravity solutions with
non-constant dilaton [see also the hint for (15.1)]. For the oxidation
remember that the 4D line element is determined from the 2D metric
Jap and the dilaton X as follows:

ds%4) = gop dz® dz” + 2X Q2.

For the constant dilaton vacua use X = const. as early as possible.
Exploit that the Ricci scalar R uniquely determines the Riemann tensor
in 2D — if you know e.g. that R is constant spacetime can only be
deSitter, Minkowski or Anti-deSitter, depending on the sign of R.



