Daniel Grumiller May 17th 2010

Black Holes II — Exercise sheet 9

(19.1)

(19.2)

(19.3)

Hamilton—Jacobi formulation

Recall the Hamilton—Jacobi formulation of mechanics by deriving the
Hamilton—Jacobi equation for Hamilton’s principal function S(g,t) for
a given Hamiltonian H (g, p)
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You can start either with the Hamilton formulation or the Lagrange
formulation or the Newton formulation of mechanics.

Holographic renormalization in quantum mechanics

Take the Hamiltonian of conformal quantum mechanics [V. de Alfaro,
S. Fubini and G. Furlan, Nuovo Cim. A34 (1976) 569]
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for ¢ > 0. Consider the variational principle for the action
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in the limit t; — oo and holographically renormalize the action. Dis-
cuss what happens with the first variation of the action if you do not
add a holographic counterterm.

On-shell action of 2D dilaton gravity
Calculate the on-shell action for Euclidean 2D dilaton gravity with an
asymptotic boundary at X = oo, where X is the dilaton field.

These exercises are due on May 31st 2010.



Hints:

e Check any book on theoretical mechanics if you need a reminder. It is
sufficient for this exercise to derive the Hamilton—Jacobi equation for
the simplest case possible.

e Make the Ansatz for the improved action
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and postulate that the counterterm solves the Hamilton—Jacobi equa-
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Solve the Hamilton—Jacobi equation asymptotically (in the limit of
large ¢1) and keep the first term (if you want you may keep also the
subleading term). If you need further hints consult 0711.4115 where
exactly this example is treated.
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e The full action for Euclidean 2D dilaton gravity is given by
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with the standard definitions of the functions w and @ in terms of
the potentials U and V' [see hint of exercise (15.1)]. Recall that the
solutions of the equations of motion are given by
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where M is the black hole mass. Since the boundary is an X = const.
hypersurface, in the gauge above the determinant of the induced metric
at the boundary is given by v = £(X), while the trace of extrinsic
curvature is given by
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Note that you are allowed to exploit on-shell identities to simplify the
calculation.



