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Black Holes II — Exercise sheet 5

(15.1) Extrinsic curvature of cylinder

Take flat Euklidean space, roll it into a cylinder and calculate the ex-
trinsic curvature tensor and its trace at the boundary.

(15.2) Gauss–Bonnet theorem with an edge

Consider the round 2-sphere and calculate the expression on the left
hand side of the simplest version of the Gauss–Bonnet theorem
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The right hand side is known as Euler characteristic of the correspond-
ing manifold, χ(M) = 2(1 − g), where g is the genus of the manifold
M . What is the resulting g for the 2-sphere? Consider now only half
of the 2-sphere and calculate the expression
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whereM is now half of the 2-sphere (including the disk), ∂M its bound-
ary, γ the induced metric at the boundary and K trace of extrinsic
curvature. How does this result compare with the previous one?

(15.3) Generalized Fefferman–Graham expansion

Consider an asymptotically AdS metric in Gaussian normal coordinates

ds2 = dρ2 + γij dx
i dxj

with the following asymptotic expansion in the limit of large ρ

γij = e2ργ
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ij + . . .

where γ
(0)
ij = ηij is the flat Minkowski metric. Calculate the asymptotic

expansion for extrinsic curvature Kij and its trace K = Kijγ
ij . It is

sufficient to keep only the three leading terms in these expansions (note
that some of the terms may vanish; in that case you need not go to
even higher order in the expansion).

These exercises are due on April 26th 2012.



Hints:

• It is easiest if you use Gaussian normal coordinates to parametrize the
cylinder, e.g. standard cylindrical coordinates

ds2 = dρ2 + ρ2 dφ2 + dz2

The boundary is a ρ = const. hypersurface so that ρ = ρ0 at the
boundary. Derive then the induced metric at the boundary γij (where
xi = {φ, z}) and exploit that in Gaussian normal coordinates extrinsic
curvature is given by

Kij =
1

2
∂ργij

Its trace is then given by K = Kijγ
ij .

• The most important part of this exercise is to realize that the mani-
fold consists of two separate pieces, namely the half of the sphere, say,
the southern hemisphere, and the disk on top. You can picture this by
mentally cutting through Earth and throwing away they northern hemi-
sphere. As you should check, one part turns out to be intrinsically flat
and extrinsically curved, while the other part is extrinsically flat and in-
trinsically curved. For the round unit sphere the Ricci scalar is given by
R = 2, as you can check easily. (If you get R = −2 then you are using
other conventions and have to use different signs in the Gauss–Bonnet
formulas! I am using conventions such that Rµν = +∂λΓ

λ
µν − . . . ) The

extrinsic curvature of the disk works essentially in the same way as in
the first exercise.
Historical sidenote: The Gauss–Bonnet theorem is the simplest exam-
ple of an index theorem, a type of theorem that relates the integral over
some local quantity (here the Ricci scalar) to a topological property of
the manifold (here the number of holes). The more general version,
called Atiyah–Singer index theorem, is one of the greatest mathemati-
cal discoveries from the 20th century.

• Calculate first the expansion for the inverse metric

γij = e−2ρ γ̂
ij

(0) + e−3ρ γ̂
ij

(1) + e−4ρ γ̂
ij

(2) + . . .

and determine the coefficients γ̂ij

(n) by requiring γijγjk = δik. It is conve-
nient to use conventions such that all 2-dimensional indices are raised
and lowered with the flat metric γ

(0)
ij = ηij . Be careful with signs and

be sure that you take into account all terms, particularly in γ̂
ij

(2). Ob-
taining the extrinsic curvature tensor is straightforward since we are in
Gaussian normal coordinates (see the hint for the first exercise). The
trace K is then obtained from multiplying the expansions Kijγ

ij up to
the required order.


