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3. CMS exercise: Random Phase Approximation applied to the
2d Hubbard Model

Introduction

The two-dimensional Hubbard model displays, at low-temperatures, some of the most intriguing

(and heatedly debated!) physics of condensed matter. For instance, it is considered the basic

model for describing the unconventional high-temperature superconductivity of the cuprates, in

the slightly hole-doped regime away from half-filling. Depending on the filling level, however,

a very rich phase diagram with competing instabilities is found. In this CMS exercise, we

will concentrate to analyze, using the RPA, the tendency towards charge and spin (magnetic)

instabilities at half-filling (particle-hole symmetric case).

The definition of the RPA susceptibility χRPAC/S (~q, ω) and the non-interacting susceptibility

χ0(~q, ω) has been given in the lecture

[χRPAC/S (~q, ω = 0)]−1 = [χ0(~q, ω = 0)]−1 ± U (1)

where the “+/−”signs on the l.h.s. of the equation correspond to the charge (C) and spin (S)

susceptibility, respectively, and

χ0(~q, ω = 0) = χ0(~q) = − 1

(#k)

∑
~k

f(ε~k+~q
)− f(ε~k)

ε~k+~q
− ε~k

(2)

where f(x) = (eβx + 1)−1 is the Fermi-Dirac distribution function, and β = 1/T is the inverse

temperature.

Purpose of the exercise

The aim of the exercise is to write a program “from scratch” capable of calculating the ~q-

dependent (but, static, i.e., ω = 0) charge and spin susceptibilities for the half-filled 2d Hubbard

Model using the RPA. The half-filled 2d Hubbard Model is given by the Hamiltonian

HHub =
∑
~k,σ

ε~k c
†
~k,σ
c~k,σ + U

∑
i

ni↑ni,↓ (3)

where ε~k = −2t[cos(kx) + cos(ky)], kx, ky ∈] − π, π]. Typically one sets 4t = D = 1 and

U > 0. You may use any programming language of your choice (but Fortran is suggested to

ensure a “uniformity” among the source files). The program will then be used to investigate the

tendencies towards charge and magnetic instabilities of the system with focus on the asymptotic

temperature regions.

Tasks

1. Calculate numerically χ0(~q) for β = 0.5, 1, 10, 100, 1000 for a sparse q-grid in the (ir-

reducible)1 Brillouin zone (BZ). Identify the point ~Q∗ where χ0(~q) display its maximal

1For the q-grid, you might, alternatively, consider the reduced, but not fully irreducible BZ, such as qx, qy ∈
[0, π] Note that the k-summation has to be performed, instead, on a fine mesh over the whole BZ.
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value. Is there a connection between ~Q∗ and the Fermi surface (of your half-filled case),

i.e., the k-points where ε(~k) = 0 in the Brillouin zone? If yes, which one?

2. Calculate [χRPAS ( ~Q∗)]−1 and [χRPAC ( ~Q∗)]−1 for U = 0.005, 0.0075, 0.01, 0.02, 0.1, 0.2 and

plot them versus the temperature T = 1/β ∈ [0.001, 1]. Make sure that the k-point

integral is converged. Hint: Calculate χ0( ~Q∗) first and then make a loop over U . Which

susceptibility diverges (χ−1
RPA → 0) and which is suppressed? Give a physical interpretation

of the effect of U in RPA. Extract the critical temperature T∗ for each U from your data.

3. By rotating the coordinate system and using the symmetries of the system one can show

that

χ0( ~Q∗) ∝
∫ π

2

0

∫ π
2

0

tanh(β cos(u) cos(v))

cos(u) cos(v)
dudv. (4)

Find the proportionality constant (either analytically or numerically). What is the asymp-

totic form of χ0( ~Q∗) for β � 1 (to first order)? For β � 1 tanh(βx) will mainly act as

low energy cut off, that is

χ0( ~Q∗) ∝
∫ acos(Λ/β)

0

∫ acos(Λ/β)

0

1

cos(u) cos(v)
dudv, (5)

for a suitable Λ. What is the asymptotic form of χ0( ~Q∗) for β � 1 (to first order)? Hint:

sec(x)=1/cos(x) can be found in a ’list of integrals of trigonometric functions’.

4. Give an expression for the critical temperature T∗ as a function of U in the region T∗ � 1

and in the region T∗ � 1, using the asymptotic forms of χ0( ~Q∗). Fit Λ in the expression

for T∗ � 1 to the critical temperature for U = 0.005. Plot the two expressions and the

previously calculated critical temperatures in a single graph (T∗ v.s. U).

5. Try to relate the observed behavior of χ0 at low-T with the generic properties of the two-

dimensional model at half-filling. Hint: Express the k-sum defining χ0( ~Q∗) as an integral

over the density of states N(E), and identify the contribution from each factor in the

integral. Elaborate on the physical origin of each contribution.

6. How would your results for χRPAC (~q) and χRPAS (~q) change, if you instead had considered

the half-filled but attractive (i.e., U < 0) Hubbard model?

Please write a small report (in a single .pdf file) and send it in per e-mail with your source

file(s) attached.

Viel Spaß ... und Erfolg!


