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1. Getting familiar with the Density of States 2+8=>5 points

Calculations of thermodynamic quantities, response functions and Feynman diagrams in QFT
for condensed matter systems often require the evaluation of integrals or sums over all momenta
k (typically over the first Brillouin Zone). An important simplification of these k-summations
is possible, however, when the integrand F is depending on the energy ¢(k) only. In this case
the integration/sum is best performed by using the energy ¢ as a variable. In the case of a cubic
lattice of volume L¢ in d dimensions we have for a given observable F':
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where N (), i.e. the so-called Density of States (DOS), which can be defined via comparison
between the different equalities as

1
NE) = Td Z d(e — ex) or, for the continuous case, (2)
Kk
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a) Calculate and plot the explicit expression for A/(g) for non-interacting particles of mass m

. . . 212 . . .
in the continuous case (i.e., ex = %) in one, two and three dimensions. How do the

corresponding Fermi surfaces look like in these cases?

b) Consider the energy dispersion (k) = —2t Z?Zl cos(k;a) derived in the last exercise for
the d-dimensional Hubbard-model. Try to plot (numerically) the DOS N (e) for the cases
d = 1,2,3. Which are the most prominent features of these DOS functions and at which
energies € they occur? How would the corresponding Fermi surfaces look like for the case
d=1,2, e.g. if one has an average density of one electron per site (half-filled system)?
For further information see also: A. Georges, G. Kotliar, et.al., Rev.Mod.Phys. 68 (Appendix
A).

2. Calculations of the Lindhard function (I) 2+8=>5 points

In perturbation theory the state of a system, at first order in the perturbation, is given by:
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a) Suppose that the perturbation V is generated by an external! charge distribution:
(r|V[r') = —ed(r —r')o(x), (5)

and, assuming that the wave functions ¢(r) = (r|¢{)) of the unperturbed system are plain
waves, express the matrix element (1 |V]1Q Jrq) in terms of the Fourier transform ¢(q) of
the electrostatic potential.



b) Express the distribution of the electronic charge density as:

pr) = —e Y filvx(®)P = p” + p"(x) (6)
k

(where fy is the equilibrium Fermi distribution), p® is the density of the unperturbed system
and p™d(r) is the variation of the density at first order in the perturbation. Show that the
Fourier transform of the charge induced to first order in the potential ¢ is given by

miq) = —e2 [(ErActaT eda (7)

P 43 R2(k - q/m)

In which limit does the Lindhard screening approach the Thomas-Fermi one?

1 The perturbation is generated by an external distribution of charge, therefore it can be treated here as
a one particle potential.



3. Screened and unscreened Coulomb Potentials 0 points

(Additional exercise for the Thomas-Fermi model which will not be graded, but just discussed
by the tutor.)

a) From the integral representation of the delta function,

i(r) = / (;ljf)geik'r (8)
and the fact that the Coulomb potential ¢(r) = —e/r satisfies Poisson’s equation,
—V2¢(r) = —4med(r), (9)
show that the electronic pair potential, V(r) = —e¢(r) = €2/r, can be written in the form
V(r) = / Tk iy, (10)
Gy

where the Fourier transform V'(k) is given by

V() = = (11)

b) Show that the Fourier transf. of the screened Coulomb interaction Vi(r) = (e2/r)e F7F7 is

4re?
Vik) = 55— (12)
k2 + k3
by substituting (12) into the Fourier integral
d3k ik-r
Vi) = [ e Vi), (13)

and evaluating that integral in spherical coordinates (Hint: The radial integral is best done
as a contour integral.). Finally, deduce from (12) that V;(r) satisfies

(=V% + k2p) Vi(r) = 4me®S(x) (14)



