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1. Getting familiar with the Density of States 2+3=5 points

Calculations of thermodynamic quantities, response functions and Feynman diagrams in QFT
for condensed matter systems often require the evaluation of integrals or sums over all momenta
k (typically over the first Brillouin Zone). An important simplification of these k-summations
is possible, however, when the integrand F is depending on the energy ε(k) only. In this case
the integration/sum is best performed by using the energy ε as a variable. In the case of a cubic
lattice of volume Ld in d dimensions we have for a given observable F :

F =
1

Ld

∑
k

F(εk) =
1

(2π)d
(2π)d

Ld

∑
k

F(εk) ' 1

(2π)d

∫
ddk F(εk) =

∫
dεN (ε)F(ε) (1)

where N (ε), i.e. the so-called Density of States (DOS), which can be defined via comparison
between the different equalities as

N (ε) =
1

Ld

∑
k

δ(ε− εk) or, for the continuous case, (2)

=
1

(2π)d

∫
ddk δ(ε− εk). (3)

a) Calculate and plot the explicit expression for N (ε) for non-interacting particles of mass m

in the continuous case (i.e., εk = ~2k2
2m ) in one, two and three dimensions. How do the

corresponding Fermi surfaces look like in these cases?

b) Consider the energy dispersion ε(k) = −2t
∑d

i=1 cos(kia) derived in the last exercise for
the d-dimensional Hubbard-model. Try to plot (numerically) the DOS N (ε) for the cases
d = 1, 2, 3. Which are the most prominent features of these DOS functions and at which
energies ε they occur? How would the corresponding Fermi surfaces look like for the case
d = 1, 2, e.g. if one has an average density of one electron per site (half-filled system)?
For further information see also: A. Georges, G. Kotliar, et.al., Rev.Mod.Phys. 68 (Appendix
A).

2. Calculations of the Lindhard function (I) 2+3=5 points

In perturbation theory the state of a system, at first order in the perturbation, is given by:

|ψk〉 = |ψ0
k〉+

∑
k′

|ψ0
k′〉〈ψ0

k′ |V |ψ0
k〉

εk − εk′
. (4)

a) Suppose that the perturbation V is generated by an external1 charge distribution:

〈r|V |r′〉 = −eδ(r− r′)φ(r), (5)

and, assuming that the wave functions ψ(r) = 〈r|ψ0
k〉 of the unperturbed system are plain

waves, express the matrix element 〈ψ0
k|V |ψ0

k+q〉 in terms of the Fourier transform φ(q) of
the electrostatic potential.
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b) Express the distribution of the electronic charge density as:

ρ(r) = −e
∑
k

fk|ψk(r)|2 = ρ0 + ρind(r) (6)

(where fk is the equilibrium Fermi distribution), ρ0 is the density of the unperturbed system
and ρind(r) is the variation of the density at first order in the perturbation. Show that the
Fourier transform of the charge induced to first order in the potential φ is given by

ρind(q) = −e2
∫
d3k

4π3

fk− 1
2
q − fk+ 1

2
q

~2(k · q/m)
φ(q). (7)

In which limit does the Lindhard screening approach the Thomas-Fermi one?

1 The perturbation is generated by an external distribution of charge, therefore it can be treated here as

a one particle potential.
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3. Screened and unscreened Coulomb Potentials 0 points

(Additional exercise for the Thomas-Fermi model which will not be graded, but just discussed
by the tutor.)

a) From the integral representation of the delta function,

δ(r) =

∫
d3k

(2π)3
eik·r (8)

and the fact that the Coulomb potential φ(r) = −e/r satisfies Poisson’s equation,

−∇2φ(r) = −4πeδ(r), (9)

show that the electronic pair potential, V (r) = −eφ(r) = e2/r, can be written in the form

V (r) =

∫
d3k

(2π)3
eik·r V (k), (10)

where the Fourier transform V (k) is given by

V (k) =
4πe2

k2
(11)

b) Show that the Fourier transf. of the screened Coulomb interaction Vs(r) = (e2/r)e−kTF r is

Vs(k) =
4πe2

k2 + k2TF

(12)

by substituting (12) into the Fourier integral

Vs(r) =

∫
d3k

(2π)3
eik·r Vs(k), (13)

and evaluating that integral in spherical coordinates (Hint: The radial integral is best done
as a contour integral.). Finally, deduce from (12) that Vs(r) satisfies(

−∇2 + k2TF

)
Vs(r) = 4πe2δ(r) (14)
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