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Intro: The Fermi liquid (FL) theory by Lev Landau, postulating the existence of independent

quasi-particles with the same charge and spin of the original electrons but with energy εp 6= p2

2m ,
allows to solve the “puzzle” of the metallic physics, that is to understand why the qualitative
behavior of several observables in metals resembles so closely that of a non-interacting (!) elec-
tron gas. The classical (historical) starting point is the phenomenological consideration that
the energy change δE due to adding/removal of quasiparticles (δnp,σ) with momentum p and
spin σ to/from the Fermi sphere is given by the following functional (note that in the truly
non-interacting case, this would just be a number) :

δE[δnp,σ] =
∑
p,σ

ε̃p δnp,σ +
1

2

∑
p,p′;σ,σ′

fσ,σ′ (p,p
′) δnp,σ δnp′,σ′ + · · · (1)

The coefficients of the first term of the sum (ε̃p) , which represents the energies for creating an
excitation with momentum p without considering the feedback effect of the other quasiparticles,
are usually expanded (in the isotropic case) as ε̃p ∼ ε̃F + ṽF (p − pF ) + · · · , whereas vF =

|∂ε̃p∂p |p=pF | '
pF
m∗ , being m∗ the (enhanced) effective mass1. Finally, it is important to note that

the quasi-particle distribution function np has the same form of as for non-interacting electrons,
but in term of the quasiparticle energy εp.

3. First steps in calculating a Fermi liquid (FL) 1+1∗+2=3+1∗ points

a) Verify that the so-called quasiparticle density of states for ε = ε̃F defined as Ñ(ε) =
1
Ld

∑
p δ(ε− ε̃p) can be easily expressed as m∗

m N(εF ), where N(εF ) is the DOS of the corre-
sponding non-interacting system.

b) Derive from Eq. 1, the formal expression of the (full) quasi-particle energy, defined as the
energy necessary to add an excitation of momentum p close to the Fermi level, that is
εp = δE

δnp,σ
. Which is the physical meaning of the term correcting the value of ε̃p ? Are the

values of εp depending on temperature or chemical potential? Motivate your answer.

c) Calculate the specific heat at constant volume cV for the non-interacting Fermi gas in three
dimensions:

cV =

(
∂E

∂T

)
V

where for this specific case

E = Ekin =

〈∑
~p,σ

εpc
†
~p,σc~p,σ

〉
with εp =

p2

2m

What is the temperature dependence of cV ? How will the final result change for interacting
electrons under the assumption that the Fermi liquid theory can be applied?

1As it will be discussed in the next Lectures and Exercises, the mass enhancement can be related microscopically
to the momentum/frequency derivatives of the self-energy at the Fermi level
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4. How to sum over Matsubara frequencies 3+2+2=7 points

As it was discussed in the Lecture, the fermionic Green function in imaginary time reads

G(k, τ) = − 1

Z
Tr
{

e−βHT
[
ck(τ)c†k(0)

]}
(2)

being Z the partition function, β the inverse temperature and T is the imaginary-time ordering
operator. When transforming this expression to frequency space

G(k, τ) =
1

β

∑
n

e−iωnτG(k, iωn), (3)

using the cyclic properties of the trace, one can immediately deduce that the sum in Eq. 3 has to
be performed only over the discrete so-called fermionic Matsubara frequencies ωn = π

β (2n+ 1).
When performing the explicit evaluation of Feynman diagrams in terms of physical quantities, a
typical intermediate step consists exactly of this evaluation of sums over Matsubara frequencies.
We will consider here the simplest cases, which represent, however, the basis for performing
more complicate calculations occurring in realistic situations.

The particle density 〈n〉 of an electronic system can be expressed in term of the Green function
as follows

〈n〉 =
1

Ld

∑
k

〈c†kck〉 =
1

Ld

∑
k

G(k, τ = 0−) (4)

=
1

Ld

∑
k

1

β

∑
n

e−iωn0
−
G(k, iωn) (5)

a) Perform the Matsubara sum in (5) for the case of non-interacting electrons with energy
dispersion εk, whose Green function is given by G(k, iωn)= 1

iωn−εk [Hint: note that iωn are
exactly the simple poles of the Fermi distribution function in the complex plane with residue
−β−1. This means that the Matsubara sum can be written as an integral over a contour
enclosing all Matsubara frequencies. Note also that the Green function is analytic in the
lower/upper complex half-plane. Exploiting these analytic properties of the integrand, it is
convenient to further transform this contour into two disconnected contours extending in the
whole complex plane.]

b) Think about a possible numerical implementation of Eq. (5), e.g. suppose one knows the
value of G(k, iωn) for a finite set of frequencies (say from −iωM to iωM ) . What would be
wrong with a “straightforward” numerical evaluation of such expression (i.e., just summing
up all values available)? Suggest possible tricks to correct the problems encountered and to
get reliable numerical results.

c) Often one has to calculate so-called “bubble” diagrams of the form

1

Ld

∑
k

1

β

∑
n

G(k, iωn)G(k + q, iωn + iΩm) (6)

where Ωm is an “external” bosonic Matsubara frequency given by Ωm = 2mπ/β. Using the
free particle case again, calculate the expression (6) analytically, and discuss explicitly the
results for the two limiting cases (i) Ωm = 0,q → 0 (“static limit”), and (ii) q = 0,Ωm →
0 (“dynamic limit”). [Hint: a convenient way of proceeding is to use a partial fraction
decomposition.]

∗ Bonus points Viel Spaß!
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