43. Working in dimensional regularisation as regularisation scheme in D-dimensions, in
every closed loop with a four-particle vertex there occurs the so-called one-point
function Ag, with e.g. the matrix element M = iAAy(m), depicted by the Feynman
graph
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It is defined as D
(2mp) / D 1
A = | d"k—.
o (m) im? k2 —m? + e (57)

Using the Wick rotation k° — k% the integration path in the complex k° plane
will be rotated by 7/2 in order to get Euklidian coordinates. Use the Bogolubov-
Schwinger parametrisation
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Show that the intermediate result has the form
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For the integration over the D-dimensional momentum space work with spherical
coordinates. For that step these formulas are helpful:
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The remaining parameter integral is partially integrated (the exponent of o becomes
1 — D/2). By using
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and also € =4 — D verify the result

Perform an expension in €, (I' (£) = 2—~+4 O (¢))" and show that the final result is
Ao(m):m2(§—7+1+ln4ﬁ+ln:l—22)+O(6). (63)

1y =0.5772157.. .. Euler-Mascheroni constant



