
Programmiersprachen – Programming Languages
LVA 185.208, VU, 3 ECTS, 2014 S

Second Exercise
Exercise

Develop an interpreter of procedures in a language based on guarded
commands as specified below. The interpreter shall be written in a dynamically
typed scripting language like Perl, PHP, Python and Ruby.

The language

All variables in the language can hold strings (there are no other data types)
and have a strict single-assignment property. We distinguish between bound
variables holding a string and free variables without a value. A free variable
becomes bound when assigning a string to it. No value must be assigned to a
bound variable.

Variables can occur as parts of strings. To distinguish them from other
characters in a string we enclose them into $ signs at the begin and end. For
example, if variable x is bound to "1", y to "2" and three to "3", then the string
"a$x$$ybthree$" expands to "a12b3". As long as any of the variables occurring in a
string is free, the string cannot be expanded. Computations depending on the
string have to be delayed until all variables occurring in the string are bound.

Actually, waiting for variables to become bound is all that we need to coordinate
the execution. Waiting allows us to express sequences, alternatives,
concurrency and synchronization. It is not necessary to force the execution into
a specific sequence.

Proposed language details

A program is an unordered set of procedures. It has the following syntax (in
EBNF where terminals are in quotes):

program ::= {procedure}
procedure ::= name {name} '-' string {string} '{' {guarded_command} '}'

Each procedure begins with the name of the procedure followed by a possibly
empty list of input parameters to the left of “-”. Each variable in the input
parameter list becomes bound on procedure invocation. Strings to the right of
“-” represent results. A procedure invocation returns the results as soon as all
variables in these strings are bound. There must be at least one result.

The body of the procedure contains an unordered set of guarded commands in
braces:

guarded_command ::= {guard ':'} command ';'

command ::= name {name} '=' name {string}
 | name [name] '=' 'exec' string [string]
 | name name '=' 'split' string string
 | name '=' string {string}

guard ::= name
 | name '==' string
 | name '!=' string
 | 'finally'

Each guarded command in a procedure is executable when

all of its guards are satisfied,
all variables occurring in strings to the right of “=” are bound,
and none of the variables occurring to the left of “=” is bound.

A guard consisting just of a variable name is satisfied when the variable is
bound. If a guard compares a variable name with a string for equality or
inequality, this variable and all variables in the string have to be bound before
the guard can be satisfied. A finally guard defers the execution to the latest
possible point in time, see below.

There are several kinds of commands (described here in the same ordering as
given as alternatives in the EBNF):

In a procedure invocation, we find the name of a procedure to the right of
“=”, possibly followed by strings used as arguments. To the left of “=” there
is a variable for each result. It is an error if no procedure of the given
name exists, the number of arguments does not correspond to that of the
parameters, or the number of variables does not correspond to that of the
results.

1.

An external invocation lets the operating system execute a command
specified by the string immediately following exec. The result of the
execution is bound to the first variable to the left of “=” (usually "0" for
successful termination and other values for erroneous termination). If
there is a second variable to the left of “=”, this variable is bound to a
string containing the complete output written to the standard output
stream of the executed command. Accordingly, if there is a second string to
the right of exec, this string is used as standard input for executing the
command. For example,

 x y = exec "cat" "test"

will bind x to "0" and y to "test" because cat just copies standard input to
standard output.

2.

Splitting can be used to divide a string into parts. For example,3.

 x y = split "/" "a/b/c"

will bind x to "a" and y to "b/c". This is, the first string determines a
sub-string, and the second string will be split at the first occurrence of this
sub-string. If the sub-string does not occur in the second string, the first
variable will be bound to the whole string and the second variable to an
empty string. If the sub-string occurs at the very beginning of the second
string, the first variable will be bound to an empty string and the second
variable to the second string shorted by the sub-string.
An assignment simply binds the variable to the left of “=” to the
concatenation of all strings to the right of “=”.

4.

Each guarded command in a procedure invocation can be executed at most
once because after execution corresponding variables are no longer free. All
executable commands can be executed in parallel. However, if several
commands bind the same variable, at most one of them can be executed. The
interpreter has to select any of them (provided that it is executable) and ignore
the others.

A procedure returns its results as soon as all variables in the result strings are
bound. It is possible that a procedure returns its results before the executions
of its commands has terminated. In that case the execution continues after
return until no executable command is left. A variable in a result string may
never become bound. It is an error if a variable in a result string is free
although no command in the procedure body is executable anymore. A finally
guard helps us to avoid that case as shown in the following example:

maxnum a b c - "max" {
 ab = exec "test a -le b";
 bc = exec "test b -le c";
 ab == "0" : bc == "0" : max = "c";
 ab == "0" : bc == "1" : max = "b";
 ab == "1" : bc == "1" : max = "a";
 ab == "1" : bc == "0" : ac = exec "test a -le c";
 ac == "0" : max = "c";
 ac == "1" : max = "a";
 finally : max = "error";
}

In Unix that use of test compares two strings supposed to represent integers. If
the first integer is less than or equal to the second integer, the result is "0", and
if the first integer is larger than the second one, the result is "1". In maxnum, two
executions of test run concurrently. If possible, the result values determine the
result bound to max. Only in one case we need a further execution of test.
However, there is a problem because test will return a different unknown value
in the case of an error, maybe "2" if any of the arguments is not an integer. The
finally guard provides a solution: This guard is satisfied only if all other guarded
commands are no longer executable.

All the details given above describe an example of a language that you shall
develop. Please feel free to change all the details and develop your own

language. However, your language must distinguish between bound and
unbound variables, variables must have a single assignment property, the
execution must be coordinated by waiting for variables to become bound
(supporting concurrency, sequences and alternatives), and procedures must be
recursively invokable.

Testing

Please develop at least one nontrivial program in your language to test the
language and its implementation. Such coordination languages have advanced
capabilities to deal with concurrency and rather complicated forms of
coordination. They make it easy to invoke programs in a similar way as do shell
scripts. Your test application(s) shall make use of these capabilities. For
example, you can develop a tool to sort files into several directories according
to file names, file extensions, file sizes, change dates, etc., and create a protocol
telling where files have moved, thereby using a maximum of parallelism.

