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Exercises
Euler momentum theorem – Bernoulli‘s equation – Open-channel flow
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Ex 1. Euler momentum theorem

2

Opponitz Kraftwerk , Wien Energie, Austria

• r = 1000 [kg m-3]

• m = 1.0 x 10-3 [kg m-1 s-1]

Input data:

• Q = 8 [m3 s-1]

• D = 1 [m]

• ∆h = 115 [m]

• ∆l = 160 [m]

• Penstock in galvanized steel: ks = 0.15 x 10-3 [m]

Let us consider again the penstock pipe of the Opponitz power plant. Let us consider again the 
case detailed in TH_PipeFlow, where a discharge of Q = 8 [m3 s-1] is obtained by partially closing 
a valve that is situated at the downstream end of the penstock.

Imagine now that the penstock pipe is not straight, but has a change in direction of 75 [°] near 
its downstream end. Assume that the last 20 [m] of the penstock, including the bend and the 
valve, are flat.

Determine the force induced by the flow on the pipe due to this change in direction. Determine 
the total force, the downslope component of the force, and the transverse component of the 
force for two configurations: the first with the bend just upstream of the valve and the second 
with the bend just downstream of the valve. For what configuration is the force smallest ?

75[°]

We have considered this example already in TH_PipeFlow
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Ex 1. Euler momentum theorem. Solution

• We have developed the solution for 
a change in direction in the lecture 
TH_EulerMomentumTheorem:

• We neglect the weight of the water in the control volume, 
• The only unknown in the equation is p at the location of the bend. It has to be 

determined by considering the energy budget along the entire system (Bernoulli 
equation extended with energy losses). This energy budget has been detailed in 
TH_PipeFlow and is reproduced hereafter. There is only a minor change to account 
for the horizontality of the last 20 [m] of the pipe.
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= 5.3 [m]

hr = 11.0 [m]

U = 10.2 [m s-1]

Q = 8.0 [m3 s-1]

hm = 98.7 [m]

Ex 1. Euler momentum theorem. Solution

K = 18.6 [m]
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Ex 1. Euler momentum theorem. Solution
• Assume that the valve is in the middle of the straight reach (10 [m] from the penstock exit) 

and that the bend is just upstream/downstream of the valve. 
• We find p/g at the bend by applying the Bernoulli equation between a point where we know 

the flow characteristics and energy level (such as the surface of the reservoir or the outflow 
section of the penstock) and the bend (point 3 in the figure on the previous slide). Let us 
choose the surface of the reservoir as known point. 

The minor energy losses are written in parentheses 
because they have to be excluded/included for a 
bend upstream/downstream of the valve 
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∆l = 150 [m]
f = 0.013; value determined for this case in the examples in TH_PipeFlow
U2/2g = 5.3 [m]: value given in previous slide
K = 18.6: value given in previous slide
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for a bend upstream of the valve

for a bend downstream of the valve
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Ex 1. Euler momentum theorem. Solution
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= (8’149 + 76’585) x 0.74 
= 62.8 [kN]

= (8’149 + 6’164) x 0.74 
= 10.6 [kN]

= (8’149 + 76’585) x 0.97 
= 81.8 [kN]

= (8’149 + 6’164) x 0.97 
= 13.8 [kN]

Bend upstream of valve Bend downstream of valve

Remarks: 
• The forces exerted by the flow on the penstock in the bend, and hence forces 

required to anchor the penstock bend, are much smaller when the bend is 
installed downstream of the valve.

• The second term involving p can be more important than the first involving 
the momentum flux. This remark cannot be generalized for all cases.
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Ex 2. Euler momentum theorem

7

A horizontal jet is generated by pumping water out of a large reservoir. The discharge of the 
jet is Q = 0.1 [m3 s-1] and the jet diameter is D = 0.15 [m]. The free surface of the reservoir 
is situated 10 [m] below the jet axis. Energy losses in the system can be neglected. 

1. Determine the energy head introduced by the pump in the system.
2. How many bolts are required to anchor the pump, if one bolt has an admissible 

shear force of 25 [N] ?

Anchor bolts

Pump
D = 0.15 [m]

10 [m]
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Ex 2. Euler momentum theorem. Solution

8

1. Determine the energy head introduced by the pump in the system.
The energy head introduced by the pump is determined by applying the Bernoulli 
equation along a streamline (shown in red) between point 1 at the free surface of the 
reservoir and point 6 in the jet at the pipe outlet. The Bernoulli equation includes the term 
hpump that represents the energy head introduced by the pump.

Anchor bolts

Pump

D = 0.15 [m]
10 [m]

1

6

Datum

• Pressure is equal to atmospheric 
pressure at the free surface and 
in the jet (p1 = p6 = pa=0)

• U1 = 0

The pump has to add 10 [m] of potential 
energy and 1.6 [m] of kinetic energy.

• Note that another important characteristic is the required hydraulic power of the pump. 
It is given by P = gQhpump [W]. In the present example, a pump with a hydraulic power of 
P = 11.4 [kW] would be required. 

• Note that this design will induce a cavitation risk.
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® hpump = h6 - h1 + U6
2

2g
= h6 - h1 + 8Q2

gp 2D4
=11.6 [m]
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Ex 2. Euler momentum theorem. Solution

9

2. How many bolts are required to anchor the pump, if one bolt has an admissible 
shear force of 25 [N] ?

The anchorage of the pump has to balance the force exerted by the flow on the wall of 
the entire pipe system. Because the flow is frictionless, this force is the integral of the 
pressure forces on the pipe wall. Therefore, we choose a control volume (in red in the 
figure) that encompasses the entire pipe.  

in frictionless flow

Anchor bolts

Pump

D = 0.15 [m]
10 [m]

1

6

2
Datum

(See TH_EulerMomentumTheorem)

is the weight of the fluid in the control volume V

Where            is the force exerted by the flow on the 
anchorage, which is equal in magnitude but opposite in sign to 
the force exerted by the pipe wall on the flow.

Assume for the sake of simplicity that the pipe has a constant cross-section Spipe
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Ex 2. Euler momentum theorem. Solution
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=566 [N]  23 bolts are required to 
anchor the pipe

This example is not as simple and trivial as it might look like at first sight. It is appropriate to 
illustrate the importance of the choice of the control volume. Let us analyse the different 
components of this anchor force by dividing the control volume in different parts.

Anchor bolts

Pump

D = 0.15 [m]
10 [m]

1

6

2
Datum

3

4 5The total force Fanchor comes from 
four contributions:

- Fvert between sections 2 and 3

- Fbend between sections 3 and 4

- Fpump between sections 4 and 5

- Fnozzle between sections 5 and 6

These four contributions will now 
be analysed.
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Ex 2. Euler momentum theorem. Solution

11

2. The bend:
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• Where p2, p3, p4, p5 and p6 are obtained by applying Bernoulli’s equation along a streamline 

1. The vertical pipe:

®
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• The sum of the four contributions gives the total forces derived as answer to question 2. 

• An erroneous choice of the control volume that does not encompass the entire pipe wall would only have 
given part of the force exerted by the flow on the pump anchorage 
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Ex 3. Euler momentum theorem

12

Water (ρ = 1000 [kg m-3]) is pumped out of a pipe with cross-sectional area S1 = 0.2 [m2] at a 
velocity of U1 = 10 [m s-1] before it hits a stationary plate that is tilted at an angle α = 60 [°] 
relative to the incoming jet. The incoming jet is split into two outgoing jets. Assume that the 
effects of gravity can be neglected. The jet is surrounded by air at atmospheric pressure. The 
figure pictures the top view of the jet exiting the pipe and hitting the plate.

1. Prove that the magnitudes of the outgoing velocities U2 and U3 have to be equal to the 
magnitude of the velocity U1 of the incoming jet using Bernoulli’s equation.

2. Choose a control volume and calculate the x- and y-component of the total force F the jet 
exerts on the plate. Assume that S2 = 2S3.
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Ex 3. Euler momentum theorem. Solution

13

1. Prove that the magnitudes of the outgoing velocities V2 and V3 have to be equal to 
the magnitude of the velocity V1 of the incoming jet using Bernoulli’s equation.

• Apply the Bernoulli equation to a streamline that 
originates in the jet near the pipe outlet (point 1) 
and one in the jet near the plate in a region where 
the streamline is straight again (point 2): 

• The plane is horizontal: h1 = h2. 
• The pressure at the jet-air interface is 

atmospheric. In sections with quasi-straight and 
quasi-linear streamlines, the pressure does not 
vary perpendicularly to the streamline 
(TH_BernoulliEquation). As a result, p = pa in the 
cross-sections containing points 1 and 2.
 V1 = V2

• Note that in general when considering high-velocity jets (also non-horizontal ones) h1-h2

is negligible with respect to V2/2g, which implies that V1≈V2.
• By applying Bernoulli’s equation to a streamline between points 1 and 3, on finds V1=V3. 
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Ex 3. Euler momentum theorem. Solution

14

2. Choose a control volume and calculate the x- and y-component of the total 
force F the jet exerts on the plate. Assume that S2 = 2S3.

• Choose an appropriate control volume 
(in red in the Figure) in the jet 
bounded by surfaces Sa, S2 and S3 
perpendicular to the jet in regions 
where the jet is quasi-straight.

• Apply the Euler momentum theorem:

n1

n2

n3

• Assume that the velocity is constant in the cross-section of the jet: 

• where F is the force exerted by the flow on the 
plate. F is obtained as the integral of the pressure on the 
surface of the control volume. Only pressures that 
deviate from the atmospheric pressure contribute to F. 
These deviating pressures occur on the plate.
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Ex 3. Euler momentum theorem. Solution

• Mass conservation: Q1 = Q2 + Q3 US1 = US2 + US3 S1 = S2 + S3

• Input data: S2 = 2S3

S2 = 2S1/3
S3 =   S1/3

•

Remark:
For an angle a = 0°, this approach would lead to the result that the jet does not exert 
any force on the plate. This result is obtained because we have neglected friction 
between the plate and the jet.
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Ex 1. Bernoulli’s equation

16

[https://aquariumdepot.com]

Pistol Shrimp = Knalkrebse
oder Pistolenkrebse

We have discussed in TH_Introduction the 
very original and surprising hunting strategy 
of the pistol shrimp. By quickly closing its 
clamp, the pistol shrimp generates a high 
velocity jet, which leads to the generation of 
a cavitation bubble. The pressure shock 
generated by the subsequent explosion of 
the cavitation bubble kills the pray.

Imagine that the pistol shrimp is at the bottom of a 0.5 [m] deep aquarium filled with 
water at 20 [°]. Estimate the velocity of the jet that the pistol shrimp creates.
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Ex 1. Bernoulli’s equation

17

Cavitation 
bubble

0.5 [m]

1
2

• Approximate the problem as a 
steady state flow

h1 + p1

g
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2

2g
= h2 + p2

g
+ U2

2

2g

• Assume h1 = h2 and U1 = 0

• Apply Bernoulli’s equation to 
the streamline that originates 
at the pistol shrimp’s claw 
(point 1) and terminates in the 
cavitation bubble (point 2): 

• p1/g = pa/g + 0.5 [m] = 101’360/9’810+0.5 [m] = 10.83 [m]. It is important to consider 
absolute pressure (including the atmospheric pressure) when dealing with cavitation.

• p2 = pv = 2’339 [N m-2] vapour pressure of water at 20 [°] (see TH_Introduction), i.e. the 
pressure at which water boils (and thus generates cavitation bubbles) at 20 [°].
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Ex 2. Bernoulli’s equation. Torricelli’s formula (1644)

18

Consider a reservoir of constant surface area Sres filled 
with a fluid of density r [kg m-3]. An overflow is used 
to maintain the fluid at a constant level D [m] in the 
reservoir. The fluid flows out of the reservoir in the 
form of a jet through an opening in the bottom of 
surface area S [m2].

D

U 

1. Determine the velocity U [m s-1] in the jet.
2. Determine the discharge flowing out through the bottom opening.
3. Consider now the emptying of the reservoir. Assume that S << Sres, such that the 

variation of the free surface in the reservoir is very slow, and the problem can be 
considered as quasi-stead. Determine the time required to empty the reservoir.

Sres

S

18



Ex 2. Bernoulli’s equation. Torricelli’s formula (1644). Solution

19

D

U2

1. Determine the velocity U [m s-1] in the jet.
Sres

S
h1 + p1

g
+ U1

2

2g
= h2 + p2

g
+ U2

2

2g

• Apply Bernoulli’s equation to the streamline that 
originates at the water surface (point 1) and terminates 
the free jet just below the opening (point 2): 

1

2

• The pressure at the jet-air interface is atmospheric. In 
sections with quasi-straight and quasi-linear streamlines, 
the pressure does not vary perpendicularly to the 
streamline (TH_BernoulliEquation). As a result, p = pa in 
the jet just below the opening

• Mass conservation: U1Sres = U2S if we assume constant 
velocities at the reservoir surface and in the jet. 

• Because S << Sres, the variation of the free surface in the 
reservoir is very slow  U1 ≈ 0.

®U2 = 2gD : Torricelli’s formula
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Ex 2. Bernoulli’s equation. Torricelli’s formula (1644). Solution

20

There are two surprising things about Torricelli’s formula:
1) The speed of efflux of a liquid from an opening in a reservoir equals the speed 

that the liquid would acquire if allowed to fall from rest from the surface of the 
reservoir to the opening. The velocity of a solid particle dropped in vacuum 
from a height D would be the same.

2) This speed of efflux is independent of the density of the fluid, i.e. oil and water 
have the same speed of efflux.

Explanation: By applying the Bernoulli equation along a streamline, we have 
neglected energy losses, i.e. we have assumed that the fluid has no resistance 
against deformation or flow, or in other words no viscosity.

Note that the same results is obtained for an opening in the sidewall of the reservoir, as 
long as the size of the opening is small with respect to D. 
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Ex 2. Bernoulli’s equation. Torricelli’s formula (1644). Solution

21

D

U2

2. Determine the discharge flowing out through the 
bottom opening.

Sres

S Cc is the contraction coefficient.

S2

1

2

Q =S2U2 = CcSU2 = CcS 2gD

• A contraction of the cross-section of the jet typically 
forms just downstream of the opening. The smallest 
cross-section is called the vena contracta. It cross-
sectional area is defined as S2 = CcS, where S is the 
cross-sectional area of the orifice.

• The contraction coefficient Cc depends on the 
geometry of the opening. For a rounded opening 
(as designed in the previous figure), the contraction 
is negligible and Cc ≈ 1. For sharp-edged openings, 
Cc can be as low as 0.6.
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Ex 2. Bernoulli’s equation. Torricelli’s formula (1644). Solution

22

D

Q 

Sres

S

3. Determine the time te required to empty the reservoir.

According to mass conservation, the outflowing discharge Q
leads to loss of fluid volume in the reservoir of -dV per unit time 
dt, or: Q=-dV/dt. This loss of fluid volume occurs as a lowering of 
the water surface in the reservoir, or dV = Sres(D)dD.

-dV/dt

® Q = CcS 2gD = -Sres D( ) dD
dt

® dt = - 1

CcS 2g

Sres D( )
D

dD

® dt
0

te

ò = te = - 1

CcS 2g

Sres D( )
D

dD
D0

0

ò ;D0 = initial water 
level in the reservoir

• Note that this formula is valid for an arbitrary shape of the reservoir.
• For a reservoir of constant cross-sectional shape (Sres = constant), the formula gives:

te = - Sres

CcS 2g

dD

D
=

D0

0

ò 2Sres D0

CcS 2g

22



Ex 3. Bernoulli’s equation. The Venturi tube (~1800)

23

A Venturi tube is a pipe that consists of a contraction followed by an expansion (Figure). 
Demonstrate that velocity and discharge can be derived from the pressure difference 
between the upstream section and the contracted section.

Note that energy losses are typically negligible in converging flow, whereas they can be 
substantial in diverging flows, especially when flow separates from the walls and 
recirculation zones form. For that reason, the contraction in Venturi tubes is typically 
rather abrupt (~20[°]), whereas the divergence is typically more gradual (~6[°]).

Source: Wikipedia

Flow

Venturi tube on the hull of an airplane 
for velocity measurements

∆p*/g

U1 U1U2

Venturi tube
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Ex 3. Bernoulli’s equation. The Venturi tube (~1800). Solution

∆p*/g

1 2

Datum

Assume that the velocity is constant in 
the approach cross-section 1 and in the 
contracted cross-section 2. Assume 
further that streamlines are locally about 
straight and parallel, implying that p* is 
constant in the cross-section (see 
TH_BernoulliEquation). This implies that 
the energy per unit head E = p*+U2/2g is 
constant in the cross-section 

Apply now Bernoulli’s equation on a streamline a a streamline that between a point in 
cross-section 1 and a point in cross-section 2:

Total energy head
U1

2/2g U1
2/2g

p1
*/g p2

*/g

Piezometric head
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Mass conservation
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The empirical discharge coefficient CQ is often introduced to account for deviations 
from theory, such as the occurrence of (relatively small) energy losses in the Venturi.  
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Ex 1. Open-channel flow

25

Consider a reach on the Danube near Vienna.

1. Schematize the geometry of the river system and justify your schematization. 

In practice, it is important to treat problems with the appropriate level of complexity. For example, 
what level of complexity do you retain in the schematization of the river shape ? Can the cross-
sectional shape be approximated by a trapezium ? Or is the effect of the banks negligible and can it be 
approximated by a rectangle, which simplifies calculations. Can the bottom slope be taken as constant 
in the considered reach ?

2. Choose a discharge Q (for example the mean annual discharge).

3. Draw the specific energy curves for Q.

4. Compute the critical flow depth (Dc) and the corresponding specific energy (Es,c) for this Q
and indicate them on the specific energy curve.

5. Make an estimation of the friction coefficient and justify your estimation.

6. Compute the normal flow depth (Dn) for Q, and represent it on the specific energy curve.

7. Define the flow regime.

8. Due to construction works, the width has to be reduced by 50m over a length of 500m. 
Based on specific energy considerations, compute the local variation in the elevation of the 
water surface resulting from this width reduction.
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Ex 1. Open-channel flow. Solution

26

1. Schematize the geometry of the river system and justify your schematization. 
• We can measure on a map or Google Earth, for example, that the top width is about 300 [m]. 
• We can measure the bed slope on a map, Google Earth, or search in literature. The 

longitudinal profile of the Danube has been illustrated in TH_Introduction. That figure shows 
a slope that is quasi constant near Vienna, and approximately equal to Jf = 0.0005 [-].

• The cross-sectional shape can be approximated by a trapezium with horizontal bottom and 
inclined banks. The maximum flow depth near Vienna is about 10 [m]. This implies a 
minimum width-to-depth ratio of B/Dmax = 30. It is generally accepted that the inclination of 
the banks can be neglected for channels with B/D > 10. This implies that the cross-sectional 
shape can be approximated by a rectangular. Note that the computations for a rectangular 
cross-section are simpler than for a trapezoidal one. The trapezoidal and approximate  
rectangular (red line) cross-sections are drawn on scale in the figure below, which shows 
convincingly that the effects of the bank inclination can be neglected. 

This level of approximation is sufficient for most practical engineering applications. Note also, 
that more detailed geometrical input data are often not available in engineering applications.

Dmax ≈ 10 [m]

B ≈ 300 [m]
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Ex 1. Open-channel flow. Solution

27

2. Choose a discharge Q (for example the mean annual discharge).

3. Draw the specific energy curves for Q.

The annual average discharge near Vienna is Q ≈ 2000 [m3 s-1]. This result can be obtained 
from hydrological data measured by the Austrian hydrological services. It can also be read 
from the figure shown in TH_Introduction.
Notice that the methodology in Ex 1 and Ex 2 can also be adopted to analyze another 
discharge, such as a flood discharge.

4. Compute the critical flow depth (Dc) and the 
corresponding specific energy (Es,c) for this Q
and indicate them on the specific energy curve.

E
s

= D + U 2

2g
= D + Q2

2g BD( )2

The curve has been computed with Matlab
for D in the range 0 to Dmax = 10 [m]

Q2B

gS3
= Q2

gB2D
c
3

= 1 ® D
c

=
Q B( )2

g

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

3

= 1.65 méë ùû

and Es,c = 2.48 [m]
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Ex 1. Open-channel flow. Solution

28

5. Make an estimation of the friction coefficient and justify your estimation.

6. Compute the normal flow depth (Dn) for Q, and represent it on the specific energy curve.

7. Define the flow regime.

The estimation of the friction coefficient is of crucial importance but very difficult, as discussed 
in TH_OpenChannelFlow1. The Danube in the Vienna reach is obviously intensively monitored 
by the Austrian hydrological services. Hydrological stations operate that measure continuously 
the flow depth (derived from the water surface elevation) and occasionally the discharge (by 
integration of velocities measured on a grid of points spanning the cross-section). The friction 
coefficient can be estimated from the measured Q-D curve under the assumption of normal 
flow.
Note that numerous publications deal with the Danube reach near Vienna. These publications 
are a reliable source for the estimation of the friction factor.
For the considered Danube reach, a Manning-Strickler friction coefficient of Ks = 35 [m1/3 s-1] is 
adopted here.

Q =US= K
s
R

h
2/3J

f
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For the considered discharge, Dn > Dc, which implies that the normal flow at this discharge is a 
subcritical flow with Fr < 1. It also implies that this Danube reach is a mild-slope channel.
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8. Due to construction works, the width has to be reduced by 50m over a length of 500m. 
Based on specific energy considerations, compute the local variation in the elevation of 
the water surface resulting from this width reduction.

• We first establish the specific energy curve for this constricted reach (green curve in 
the figure), and superpose it on the curve for the unconstricted reach.

• The specific energy for the normal flow, Es,n = 3.82 [m], is larger than the minimum 
required specific energy in the constricted reach, Es,c,constricted = 2.80 [m]. This means 
that the constriction does not perturb the flow in the unconstricted upstream reach.

• The flow depth in the constricted 
reach is found by expressing that 
Es,constricted = Es,n = 3.82 [m] and by 
subsequently deriving the 
corresponding flow depth 
Dconstricted = 3.56 [m] from the 
specific energy curve (see insert 
in the figure). The constriction 
causes a drop in the water 
surface elevation of 0.09 [m].  
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Consider the same reach on the Danube as in Ex. 1 and the same discharge. Assume that the 
reach has a constant geometry and is sufficiently long for normal flow conditions to establish. 
A sluice gate is installed over the entire width that locally reduces the flow depth to 0.5 [m]. 

1. Draw schematically the backwater curves upstream and downstream of the sluice gate. 
Indicate in your scheme the normal and critical flow depths, and name the types of 
backwater curve that occur.

2. Compute the backwater curves upstream and downstream of the sluice gate.

3. If a hydraulic jump occurs, determine the conjugate depths and determine its location 
(distance from the sluice gate). The length of the hydraulic jump can be neglected.
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1. Draw schematically the backwater curves upstream and downstream of the sluice gate. 
Indicate in your scheme the normal and critical flow depths, and name the types of 
backwater curve that occur.

• We are dealing with the mild-slope 
channel case considered and 
schematically drawn in 
TH_OpenChannelFlow3. The figure 
from TH_OpenChannelFlow3 is 
reproduced beside.

Dc

Dn M1/2

M3

M1

• In a mild-slope channel of constant 
geometry (bottom slope and cross-
sectional shape), the flow depth 
tends to the normal flow depth in 
upstream direction. Once the 
normal flow depth has been 
attained, it cannot change anymore 
(only M1 and M2 backwater curves 
are possible).

Dc

Dn
M1

M2

M3

D1

D2 D3
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• The supercritical flow depth at the sluice gate (D2 = 0.5 [m] < Dc = 1.65 [m]) can only connect 
with the subcritical normal flow further downstream by means of a hydraulic jump.  The 
hydraulic jump occurs between a to-be-determined supercritical flow depth D3 at the 
upstream end of the hydraulic jump and the conjugate normal flow depth Dn at the 
downstream end of the hydraulic jump. 

• D3 can be determined from the equation (TH_OpenChannelFlow3):

D
3

D
n

= 1

2
1+8Fr

n
2 -1( ) Fr

n
= Q2B

gS3
= Q2

gB2D
n
3

= 0.305; Dn = 3.65 [m] and   D3 = 0.59 [m]

• D3 = 0.59 [m] > D2 = 0.5 [m], implying that an M3 backwater curve will develop between 
D2 and D3. Note that for the case D3 < D2 < Dc, a so-called submerged hydraulic jump 
develops (which is beyond the scope of the present course). 

• The water level upstream of the sluice gate will rise, in order to generate the 
pressure gradient required to make the entire discharge pass under the sluice 
gate. The water level D1 upstream of the sluice gate can be estimated by 
expressing that energy is conserved in the converging flow under the sluice gate:

E
s,1

= D
1
+ Q2

2g BD
1( )2

= E
s,2

= D
2

+ Q2

2g BD
2( )2

= 9.56 [m] ® D
1

= 9.56 [m]

• An M1 backwater curve will connect D1 to the normal flow depth Dn further upstream.
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2. Compute the backwater curves upstream and downstream of the sluice gate.
3. If a hydraulic jump occurs, determine the conjugate depths and determine its location 

(distance from the sluice gate). The length of the hydraulic jump can be neglected.

• As mentioned in the lecture, it is good practice to start computing only when you know 
the solution already qualitatively. So we are ready now to start computing.

dD

dx
=

Jf - Je

1- Fr 2
= fct(D) ® Di+1 - Di

xi+1 - xi

= fct(Di+1/2 ) » 0.5 fct(Di )+ fct(Di+1)[ ]

• We have seen in TH_OpenChannelFlow2 that the backwater curve can be computed by 
discretizing the derivative dD/dx:

Most often, the longitudinal x axis is discretized into a regular grid with spacing ∆x constant, 
and the flow dept Di is computed in every grid point xi following an iterative procedure (see 
TH_OpenChannelFlow2). Iteration is required, because the unknown Di+1 appears in the 
left hand side and the right hand side of the equation.
But there is a more clever way of solving the equation in the case considered. We can also 
discretize the D range in regular ∆D intervals, and compute the location xi where a flow 
depth Di occurs. This procedure is appropriate in the considered case, because we know all 
relevant flow depths from upstream to downstream: Dn D1 D2 D3 Dn. Solving 
the resulting equation does not require iteration: 

x
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The equation can be written more explicitly as:

• In TH_OpenChannelFlow2, we have derived a similar equation based on the Chézy
friction coefficient. Note that the exponent of Rh is 4/3 when modelling the energy 
slope with the Manning-Strickler friction coefficient, and 1 when using the Chézy
friction coefficient. For a wide rectangular channel, this equation simplifies into:
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This leads to the following equation for the backwater curves:
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Downstream of the sluice gate:
• The backwater curve between D2 = 0.5 [m] and D3 = 0.59 [m] is very short and can be 

computed in one step. Solving the equation, we find that the hydraulic jump occurs 
8.5 [m] downstream of the sluice gate. In practice, this means immediately 
downstream of the sluice gate.

• Note that the supercritical velocities downstream of the sluice gate are very high and 
have an enormous erosion potential. In practice, the bottom has to be reinforced in 
the supercritical flow reach. In order to make this supercritical flow reach as short as 
possible and to fix the location of the hydraulic jump, a stilling basin is designed just 
downstream of the sluice gate. Stilling basins will be considered in the course 
“Konstruktiver Wasserbau”.
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Upstream of the sluice gate:
• Here we compute from the sluice gate where D1 = 9.56 [m] and evolve in upstream 

direction towards Dn = 3.65 [m].
• The water surface gradient dD/dx is small for an M1 curve. This allows choosing rather 

large steps Di+1 – Di. 

Di [m]

∆x [m]

x [m]

9.56 8.65 7.65 6.65 5.65 4.65 3.65

-1901 -2134 -2219 -2403 -2928 -6899

0 -1901 -4035 -6254 -8657 -11585 -18484
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Consider a mountain river with the following characteristics:
• A longitudinal bottom slope of Jf = 0.02.
• A trapezoidal cross-section with bottom width of Bbottom = 15 [m], banks inclined at a = 45[°], 

and bank height of 2 [m] (Figure).
• A roughness coefficient according to Manning-Strickler of Ks = 30 [m1/3 s-1].

1. Compute the hydraulic capacity of the river, which is also called the bankfull discharge. 
Assume that flow is normal.

2. Compute the normal and critical flow depths for the bankfull discharge.
3. Identify the flow regime.
4. Draw the specific energy curve for the bankfull discharge and indicate the normal and 

critical flows. Consider a depth range of 0 to 6 m for drawing the curve.
5. Compute the bed shear stress for the bankfull discharge.
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1. Compute the hydraulic capacity of the river, which is also called the bankfull
discharge. Assume that flow is normal.

The discharge for normal flow conditions is given by (see TH_OpenChannelFlow1):

where Rh =S/P is the hydraulic radius, S the cross-sectional flow area, and P the wetted 
perimeter, under normal flow conditions. For a trapezoidal cross-section S and P are defined as:
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 Qbankfull = 201 [m3 s-1]
for D = 2 [m]

2. Compute the normal and critical flow depths for the bankfull discharge.

The normal flow depth is Dn = 2 [m] as found in the previous question. 

The critical flow depth is found from the equation
Q2B

gS3
= 1 (TH_OpenChannelFlow1)

where Q = Qbankfull and B is the top width (i.e. the width at the water surface):
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3
-1= 0 Solving this implicit equation leads to Dc = 2.49 [m]

3. Identify the flow regime

4. Draw the specific energy curve for the 
bankfull discharge and indicate the normal 
and critical flows. Consider a depth range of 
0 to 6 m for drawing the curve.

For bankfull discharge, Dn < Dc, which implies that the normal flow at bankfull discharge is a 
supercritical flow with Fr > 1. It also implies that we are dealing with a steep-slope channel.

5. Compute the bed shear stress for the 
bankfull discharge
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(see TH_OpenChannelFlow1)
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Consider the same mountain river as in Ex. 3. Due to the crossing of a highway bridge, 
the banks are locally vertical, but the bottom width is maintained at 15 m, leading to a 
local constriction of the flow (Figure).

1. Draw the specific energy curve in the constricted reach for the bankfull discharge 
identified in Ex. 3. Superpose this on the specific energy curve drawn in Ex. 3.

2. By how much do the banks have to be raised in order to maintain the hydraulic capacity, 
i.e. in order to avoid inundations.

3. A hydraulic jump will occur upstream of the constriction. Compute the conjugate flow 
depths (i.e. flow depths just upstream and downstream of the hydraulic jump) and 
compute the energy losses in the hydraulic jump.

4. Draw schematically the longitudinal profiles of the bed, water surface and energy line in 
the reach upstream of the constriction; indicate also the normal and critical flow depths.

5. Illustrate the evolution of the water depth on the specific energy curve.
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1. Draw the specific energy curve in the constricted reach for the bankfull discharge 
identified in Ex. 3. Superpose this on the specific energy curve drawn in Ex. 3.

E
s,constricted

= D + U 2

2g
= D + Q2

2g B
bottom

D( )2

2. By how much do the banks have to be raised 
in order to maintain the hydraulic capacity, 
i.e. in order to avoid inundations

In order to answer this question, we have to 
analyze the effect of the constriction on the 
water surface elevation.   

The specific energy curve in the constricted 
reach for Qbankfull is drawn in green.

The specific energy at normal flow in the upstream reach Es,n is smaller than the specific 
energy for critical flow in the constricted reach Es,c,constricted = 3.95 [m], which is the 
minimum specific energy to convey the bankfull discharge through the constricted reach. 
In other words, the normal flow upstream has not enough specific energy to pass the 
constriction. The flow depth upstream will have to change in such as way that the 
available specific energy increases. 
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There are two possible ways to increase the specific energy:
1. The flow depth can decrease in supercritical 

flow regime (scenario A in the specific 
energy curve). 
But there is no possible backwater curve 
that allows the normal flow depth to 
decrease in downstream direction in a steep-
slope channel (see figure). Once the normal 
flow depth has been attained in a reach of 
constant geometry (bed slope and cross-
sectional shape), it cannot change anymore.

Dn

Dc

D > Dc > Dn

Dc > D > Dn

Dc > Dn > D

S1

S2

S3

2. The flow depth can increase in subcritical flow 
regime (scenario B in the specific energy 
curve). 
This requires first a change from supercritical 
to subcritical flow regime, which occurs 
through a hydraulic jump (red arrow on 
specific energy curve). The S1 backwater curve 
than allows for increasing specific energy 
accompanied by increasing flow depth.

A

B

We first have to answer questions 3 before we 
can answer question 2. 
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3. A hydraulic jump will occur upstream of the constriction. Compute the conjugate flow 
depths (i.e. flow depths just upstream and downstream of the hydraulic jump) and 
compute the energy losses in the hydraulic jump.

The hydraulic jump will occur between normal supercritical flow depth upstream, and its 
conjugate subcritical flow downstream, which is found from (TH_OpenChannelFlow3):
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The energy losses in the hydraulic jump are computed from (TH_OpenChannelFlow3):

= 0.056 [m]

With this information, we can come back to question 2.
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2. By how much do the banks have to be raised in order to maintain the hydraulic capacity, 
i.e. in order to avoid inundations

The specific energy corresponding to D2 is: E
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Es,2 = 3.76 [m] < Es,c,constricted = 3.95 [m]. This means that the specific energy just 
downstream of the hydraulic jump is still not sufficient. As discussed before, a further 
increase in specific energy occurs through an increase in flow depth according to an S1 
backwater curve. The flow depth will rise until a flow depth D3, that has just enough 
specific energy, i.e. until Es,3 = 3.95 [m]. 
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3
= 3.44 [m]

At this flow depth D3, the flow will change from subcritical to supercritical regime 
through a sudden water level drop.

The maximum flow depth is Dmax = D3 = 3.44 [m] implying that banks have to be raised 
by 1.44 [m] to avoid inundations. Note that the maximum flow depth occurs upstream 
of the constricted reach ! 

44



Ex 4. Open-channel flow. Solution

45

4. Draw schematically the longitudinal 
profiles of the bed, water surface and 
energy line in the reach upstream of 
the constriction; indicate also the 
normal and critical flow depths.

5. Illustrate the evolution of the water depth 
on the specific energy curve.

Computed 
backwater curve 
and energy line

Schematical
backwater curve 
and energy line
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We have seen in TH_OpenChannelFlow_1 that discharge can be measured by imposing 
critical flow conditions. We have treated the example of imposing critical flow by 
means of a bottom step (the relevant slide is reproduced in the figure below). Develop 
explicitly the relation Q = Q (Dupstream) for a rectangular channel.  

36 
Bottom 

∆z 

Energy line 

Water surface Dc 

Es,c 

Critical flow: 
Dc = Dc(Q)   and  Q = Q(Dc) 

Es,c = Es,c(Q) and Q = Q(Es,c) 

Es,upstream≈Dupstream 

Es,c ≈ Eupstream - ∆z ≈ Dupstream - ∆z 

 
 Q = Q(Dupstream) 
 

Discharge measurements based on rela on Q-Dc 
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Critical flow is defined by:

The specific energy for critical flow is:

Es,c = Dc + Uc
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A discharge of Q = 12 [m3 s-1] is flowing in a 2 [m] wide rectangular channel. The 
Manning-Strickler roughness coefficient is estimated at Ks = 40 [m1/3 s-1]. The flow 
regime will obviously depend on the channel slope. For a mild slope the flow will tend to 
be subcritical, whereas it will tend to be supercritical for a steep slope. Determine the 
critical slope, i.e. the one that differentiates between mild-slope (M-type backwater 
curves) and steep-slope (S-type backwater curves) characterizations of the channel for 
the given discharge.
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• Defintions (TH_OpenChannelFlow2): Dn > Dc for a mild-slope channel, Dn < Dc for a 
steep-slope channel, and Dn = Dc at critical slope.

• Dc only depends on the discharge and the cross-sectional shape 
(TH_OpenChannelFlow1)

• Dn depends on the discharge, the cross-sectional shape, the friction coefficient, and the 
bottom slope (TH_OpenChannelFlow1)

 For a given discharge, cross-sectional shape and friction coefficient, the channel 
characterization (mild-slope or steep-slope) will depend on the bottom slope.

• Let us first compute Dc from:
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• At critical slope, Dn = Dc = 1.54 [m]

• The relation between Q and Dn is given by (TH_OpenChannelFlow1):
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