1. Test VU Wärmeübertragung, Lösung

8.11.2011

A1) Definieren Sie den Wärmeübergangskoeffizienten α . Bezeichnen Sie die verwendeten Größen und geben Sie deren Einheiten sowie die des Wärmeübergangskoeffizienten an.

$$\alpha = \frac{\dot{q}}{\Delta T} \; [W/m^2 K],$$

mit \dot{q} ... Wärmestromdichte [W/m²], ΔT ... Temperaturdifferenz zwischen der Wand und der Umgebung (einem Punkt fern von der Wand) [K].

A2) Wie lautet die Wärmeleitungsgleichung im ein-dimensionalen Fall?

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2}$$
 oder $\rho c_p \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2}$.

A3) Die Wärmeleitung von zwei Stäben im thermischen Kontakt wird durch die Größen $T-T_1, T_1-T_2, \rho c_p, \lambda, x$ und t beeinflusst. Wie viele dimensionslose Kennzahlen können Sie damit bilden? Geben Sie diese Kennzahlen an.

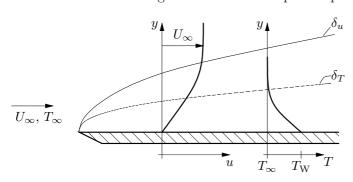
6 Einflussgrößen – 4 Grundgrößen (Länge, Zeit, Masse, Temperatur) = 2 dimensionslose Kennzahlen:

$$\theta = \frac{T - T_1}{T_1 - T_2}, \quad \frac{\lambda t}{\rho c_p x^2} \text{ oder } \frac{\sqrt{at}}{x}.$$

A4) Wie ist die Mischtemperatur in einer Rohrströmung definiert?

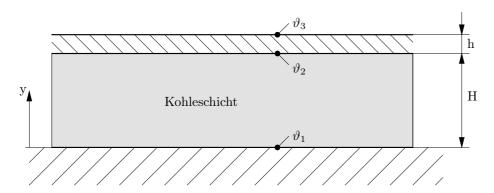
$$T_{\rm M} = \frac{\dot{H}}{\dot{m}c_p}$$

A5) Skizzieren Sie an der parallel angeströmten, beheizten, ebenen Platte den Verlauf der Dicken der Geschwindigkeits- und der Temperaturgrenzschicht für den laminaren Fall. Tragen Sie in die Skizze auch ein Geschwindigkeits- und ein Temperaturprofil ein.



Hier für Pr > 1 gezeichnet.

Eine $H=2\,\mathrm{m}$ dicke Schicht von Kohlestaub der Wärmeleitfähigkeit $\lambda_\mathrm{K}=0.2\,\mathrm{W/mK}$ ist auf einem adiabaten Fundament gelagert. Aufgrund von chemischen Reaktionen wird gleichmäßig über die gesamte Kohleschicht die Reaktionswärme von $30\,\mathrm{W/m^3}$ frei. Die Kohleschicht wird von einer Betonplatte der Dicke $h=8\,\mathrm{cm}$ und der Wärmeleitfähigkeit $\lambda_\mathrm{B}=1.6\,\mathrm{W/mK}$ abgedeckt. Die Temperatur an der Oberseite der Platte beträgt $\vartheta_3=22\,\mathrm{^{\circ}C}$.



- a) Berechnen Sie die nach oben an die Umgebung abgegebene Wärmestromdichte \dot{q}_3 .
- b) Berechnen Sie die Temperatur ϑ_2 an der Grenzfläche zwischen der Unterseite der Betonplatte und der Kohleschicht.
- c) Berechnen Sie die Temperaturverteilung $\vartheta(y)$ in der Kohleschicht.
 - Geben Sie die Randbedingungen an, die Sie für die Berechnung der Temperaturverteilung benötigen.
 - Berechnen Sie die Temperatur ϑ_1 an der Unterseite der Kohleschicht, an der Stelle y=0.
- d) Skizzieren sie die Temperaturverteilung $\vartheta(y)$ in Kohleschicht und Betonplatte. Achten Sie auf die korrekten Steigungen der Kurve!
- e) Geben Sie die maximale Temperatur an. In welcher Höhe y erreicht die Temperatur den maximalen Wert?

Lösungen bitte hier eintragen:

a)
$$\dot{q}_3 = 60 \text{ W/m}^2$$
 b) $\theta_2 = 25 \text{ °C}$ c) $\theta(y) = -\frac{\dot{q}_R^{(V)} H^2}{2\lambda_K} \left(1 - \left(\frac{y}{H}\right)^2\right) + \theta_2$

c) RB: adiabates Fundament:
$$\dot{q}(y=0)=0; \quad \vartheta(y=H)=\vartheta_2 \qquad \qquad \vartheta_1= 325\,^{\circ}\mathrm{C}$$

e)
$$\vartheta_{\max} = 325 \,^{\circ} \,$$

a

Mit $\dot{q}_2 = \dot{q}_3$ ergibt die Energiebilanz über die gesamte Kohleschicht $q_3 = \dot{q}_{\rm R}^{(V)}H = 30 \cdot 2 = 60 \text{ W/m}^2\text{K}$.

Fouriersches Gesetz, $\dot{q}_3 = -\lambda_{\rm B} \frac{\vartheta_3 - \vartheta_2}{h}$

$$\vartheta_2 = \frac{\dot{q}_3 h}{\lambda_B} + \vartheta_3 = \frac{60 \cdot 0.08}{1.6} + 22 = 25 \,^{\circ}\text{C}.$$

c)

Lokale Energiebilanz, i.e., Energiebilanz an einem infinitesimal kleinen Kontrollvolumen,

$$\dot{q} - (\dot{q} + d\dot{q}) + \dot{q}_{R}^{(V)} dy = 0,$$

$$\frac{d\dot{q}}{dy} = \dot{q}_{R}^{(V)}, \quad \text{Integration: } \dot{q}(y) = \dot{q}_{R}^{(V)} y + c_{1}.$$

Randbedingung adiabates Fundament: $\dot{q}(y=0)=0$, daher: $c_1=0$.

Fouriersches Gesetz für $\dot{q}(y)$ einsetzen, weiter integrieren,

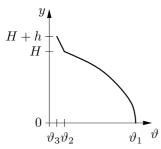
$$-\lambda_{\mathbf{K}} \frac{\mathrm{d}T}{\mathrm{d}y} = \dot{q}_{\mathbf{R}}^{(V)} y, \qquad T(y) = -\frac{\dot{q}_{\mathbf{R}}^{(V)}}{\lambda_{\mathbf{K}}} \frac{y^2}{2} + c_2.$$

Randbedingung: $\vartheta(y=H) = \vartheta_2, \ \vartheta_2 = -\frac{\dot{q}_{\rm R}^{(V)}H^2}{2\lambda_{\rm K}} + c_2$, somit

$$\vartheta(y) = \frac{\dot{q}_{\mathrm{R}}^{(V)} H^2}{2\lambda_{\mathrm{K}}} \left(1 - \left(\frac{y}{H} \right)^2 \right) + \vartheta_2.$$

$$\vartheta_1 = \vartheta(y = 0) = \frac{30 \cdot 2^2}{2 \cdot 0.2} + 25 = 325$$
 °C.

d)



Merkmale: Der Temperaturgradient ist in der Betondecke wesentlich geringer als in der Kohlenschicht, wegen $\lambda_{\rm B} \gg \lambda_{\rm K}$. An der Grenzfläche hat die Temperaturverteilung einen Knick. Weiters ist die Temperaturverteilung in der Kohlenschicht parabelförmig. Wegen des adiabaten Fundamentes ist die Tangente bei y=0 senkrecht.

e)

$$\theta_{\text{max}} = \theta_1 = 325 \,^{\circ}\text{C}, \qquad y(\theta = \theta_{\text{max}}) = 0.$$

Weitere Lösungen:

ϑ_3	$\dot{q}_{ m R}^{(V)}$	Н	h	$\lambda_{ m B}$	$\lambda_{ m K}$	\dot{q}_3	ϑ_2	ϑ_1
20 °C	$30~\mathrm{W/m^2}$	2 m	$6~\mathrm{cm}$	$1.8~\mathrm{W/mK}$	$0.3~\mathrm{W/mK}$	$60~\mathrm{W/m^2}$	$22^{\circ}\mathrm{C}$	222 °C
$21^{\circ}\mathrm{C}$	$30~\mathrm{W/m^2}$	$2 \mathrm{m}$	$5~\mathrm{cm}$	$1.5~\mathrm{W/mK}$	$0.3~\mathrm{W/mK}$	$60~\mathrm{W/m^2}$	$23^{\circ}\mathrm{C}$	$223^{\circ}\mathrm{C}$
$23^{\circ}\mathrm{C}$	$30~\mathrm{W/m^2}$	$2 \mathrm{m}$	$7~\mathrm{cm}$	$1,4~\mathrm{W/mK}$	$0.4~\mathrm{W/mK}$	$60~\mathrm{W/m^2}$	$26^{\circ}\mathrm{C}$	$176^{\circ}\mathrm{C}$
$24^{\circ}\mathrm{C}$	$20~\mathrm{W/m^2}$	$3 \mathrm{\ m}$	$8~\mathrm{cm}$	$1,6~\mathrm{W/mK}$	$0.3~\mathrm{W/mK}$	$60~\mathrm{W/m^2}$	$27^{\circ}\mathrm{C}$	$327^{\circ}\mathrm{C}$
$25^{\circ}\mathrm{C}$	$20~\mathrm{W/m^2}$	$3 \mathrm{\ m}$	$5~\mathrm{cm}$	$1,5~\mathrm{W/mK}$	$0.3~\mathrm{W/mK}$	$60~\mathrm{W/m^2}$	$27^{\circ}\mathrm{C}$	$327^{\circ}\mathrm{C}$
26 °C	$20 \mathrm{\ W/m^2}$	$3 \mathrm{m}$	$7~\mathrm{cm}$	$1{,}4~\mathrm{W/mK}$	$0.2~\mathrm{W/mK}$	$60~\mathrm{W/m^2}$	$29^{\circ}\mathrm{C}$	479°C