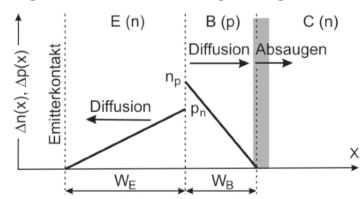

# ÜBUNGSBLATT 10


### Beispiel 37 (Solarzelle):

Bestimmen Sie aus der gegebenen Strom-Spannungkennlinie einer Silizium-Solarzelle den Kurzschlußstrom, die Leerlaufspannung, die maximale (elektrische) Leistung, den Füllfaktor, den Serienwiderstand und den Wirkungsgrad der Solarzelle. Die aktive Fläche der Solarzelle beträgt

A=2.6 cm<sup>-2</sup>, die Solarkonstante S = 925 Wm<sup>-2</sup>.



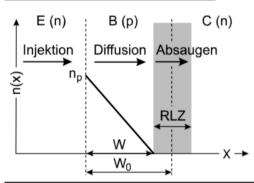
## Beispiel 38 (Stromverstärkung des Bipolartransistors):



Der aktive Betrieb eines npn-Bipolartransistors ist dadurch gekennzeichnet, dass die BE-Diode in Flussrichtung und die BC-Diode in Sperrichtung gepolt ist. Minoritätselektronen werden vom n- ins p-Gebiet injiziert, diffundieren durch die Basis und werden schließlich durch das Feld des in Sperrichtung gepolten BC Übergangs abgesaugt.

1

 $U_{BE}$  steuert die Elektronenkonzentration am BE-Interface gemäß  $n_p = \left(\frac{n_i^2}{N_{A,B}}\right) \exp\left(U_{BE}/U_T\right)$ , und somit den Kollektorstrom  $I_C$ . (N<sub>A,B</sub>: Akzeptorkonzentration in der Basis). Andererseits werden natürlich auch  $p_n = \left(\frac{n_i^2}{N_{D,E}}\right) \exp\left(U_{BE}/U_T\right)$  (N<sub>D,E</sub>: Donatorkonzentration im Emitter) Minoritätslöcher von der Basis in den Emitter injiziert, welche zum Emitterkontakt diffundieren und den Basisstrom  $I_B$  verursachen. Da  $W_B$  und  $W_E$  in der Regel viel kürzer als


die Diffusionslängen  $L_n$  bzw.  $L_p$  gewählt werden, ergibt sich sowohl in der Basis, als auch im Emitter das für die kurze Diode charakteristische "Diffusionsdreieck" (siehe Abbildung). Die Überschusskonzentration am BC-Interface bzw. am Emitterkontakt sei  $\approx 0$ .

- (a) Berechnen Sie aus den Diffusionsdreiecken  $I_C$  bzw.  $I_B$ , und damit schließlich die Stromverstärkung des Bipolartransistors  $B = I_C / I_B$  (ohne Rekombination).
- (b) Elektronen gehen auf ihrem Weg vom Emitter zum Kollektor in der Basis durch Rekombination verloren. Sie tragen damit zu  $I_{\rm B}$ , nicht aber zu  $I_{\rm C}$  bei, weil die durch Rekombination verlorenen Löcher vom Basisstrom nachgeliefert werden müssen. Dieser Rekombinationsstrom beträgt  $I_{\rm rec} = |Q_{\rm S}|/\tau_{\rm n}$ .  $Q_{\rm S}$  ist die gesamte Elektronenüberschussladung in der Basis,  $\tau_{\rm n}$  bezeichnet die Rekombinationszeit. Zeigen Sie, dass man unter Berücksichtigung dieses Rekombinationsstromes folgenden Ausdruck für die Stromverstärkung erhält:

$$B = \left(\frac{D_p}{D_n} \frac{W_B}{W_E} \frac{N_{A,B}}{N_{D,E}} + \frac{1}{2} \frac{W_B^2}{\tau_n D_n}\right)^{-1}$$

Wie ist ein npn-Bipolartransistor zu dimensionieren, damit seine Stromverstärkung möglichst groß wird ?

### Beispiel 39 (Early-Effekt):



Beim aktiven Betrieb eines npn-Bipolartransistors steuert die kleine Basis-Emitterspannung *UBE* die Elektronenkonzentration *np* am BE-Interface

gemäß 
$$n_p = \left(\frac{n_i^2}{N_{A,B}}\right) \exp(U_{BE}/U_T)$$
 und somit den

Kollektorstrom  $I_C$ . Eine schwache Abhängigkeit des Kollektorstroms von  $U_{\rm CB}$  wird durch den sog. **Early-Effekt** verursacht: Eine höhere Sperrspannung  $U_{\rm CB}$  bewirkt eine wachsende RLZ zwischen C und B. Die effektive Basisdicke W wird kleiner, das Diffusionsdreieck steiler und  $I_{\rm C}$  größer.

Gegeben: Silizium npn-Transistor; Basisdicke (bei  $U_{\rm CB}=0$ ):  $W_0=1~\mu{\rm m}$ ; Dotierungen:  $N_{\rm D,E}=10^{19}~{\rm cm}^{-3},~N_{\rm A,B}=10^{17}~{\rm cm}^{-3},~N_{\rm D,C}=10^{15}~{\rm cm}^{-3}$ ; Querschnittsfläche:  $A=100~\mu{\rm m}^2$ ;  $T=300~{\rm K}$ . Hinweis: Berechnen Sie den Diffusionskoeffizienten  $D_{\rm n}$  aus der Beweglichkeit ( $\mu$ =800 cm²/(Vs)).

- (a) Berechnen Sie den Earlyleitwert  $g_3 = |dI_c/dU_{CB}|$  bei  $U_{BE} = 0.9 \text{ V}$  und  $U_{CB} = 3 \text{ V}$ .
- (b) Bei sehr großem  $U_{CB}$  frisst die RLZ die gesamte Basis auf: Dieser **Punch-through-Effect** stellt eine Grenze für  $U_{CB}$  dar. Bei welcher CB-Sperrspannung tritt er auf?

## Beispiel 40 (Bandstruktur von Halbleiterhetero-Übergängen)

Konstruieren Sie für die beiden Halbleiter GaAs ( $E_G = 1.42$  eV, Elektronenaffinität  $\chi = 4.08$  eV) und ZnSe ( $E_G = 2.67$  eV, Elektronenaffinität  $\chi = 4.08$  eV) die Bandschemata der Übergänge: n-GaAs/n-ZnSe, p-GaAs/p-ZnSe, p-GaAs/n-ZnSe und n-GaAs/p-ZnSe. Die Fermienergie der dotierten Halbleiter soll dabei jeweils 0.4 eV von der jeweiligen Bandkante entfernt liegen.