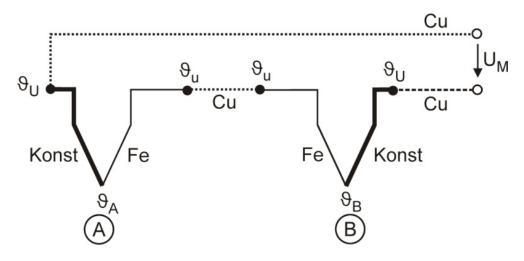


Univ.Prof. Dr.sc.techn. Georg Schitter schitter@acin.tuwien.ac.at


Lösung Rechenübung 5 Physikalische Sensorik

Messtechnik, VU 376.045 (3 SWS, 4 ECTS) Sommersemester 2014

Beispiel 1 Thermoelemente

- Messung der Temperaturdifferenz $\vartheta_A \vartheta_B$, alle Verbindungsstellen haben die Temperatur ϑ_U
- Die thermoelektrische Spannungsreihe für die beiden Materialien ist

$$K_{FePt} = +1.9mV/(100K)$$

 $K_{KonstPt} = -3.1mV/(100K)$

Beispiel 1 Thermoelemente

■ Wie groß ist die Empfindlichkeit $k_{FeKonst}$ der beiden Thermoelemente zahlenmäßig in mV/100 K?

$$k_{FeKonst} = k_{FePt} - k_{KonstPt} = \frac{1,9 \text{ mV}}{100 \text{ K}} - \frac{-3,1 \text{ mV}}{100 \text{ K}} = 5 \frac{\text{mV}}{100 \text{ K}}$$

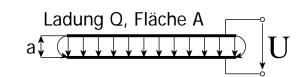
- Geben Sie die Messspannung U_M abhängig von der Empfindlichkeit $k_{FeKonst}$ der Thermoelemente und den gegebenen Celsius-Temperaturen an.
 - $k_{CuKonst} \cdot \vartheta_{U} + k_{KonstFe} \cdot \vartheta_{A} + k_{FeCu} \cdot \vartheta_{U} + k_{CuFe} \cdot \vartheta_{U} + k_{FeKonst} \cdot \vartheta_{B} + k_{KonstCu} \cdot \vartheta_{U} U_{M} = 0$
 - $\blacksquare \text{ mit } k_{xy} = -k_{yx} \text{ folgt } U_{M} = k_{KonstFe}(\vartheta_{A} \vartheta_{B})$

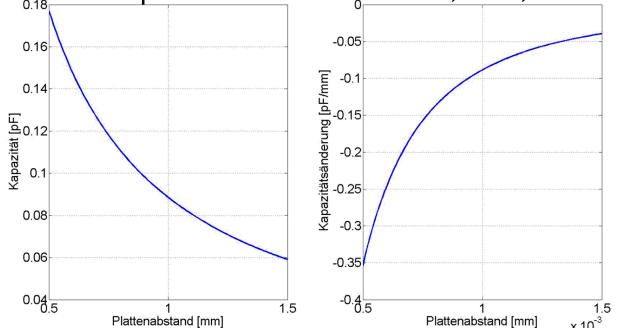
Beispiel 1 Thermoelemente

- Diskutieren Sie den Einfluss der Umgebungstemperatur ϑ_U auf die Messspannung U_M .
 - Durch die Differenzbildung der Temperaturen verschwindet der Einfluss der Umgebungstemperatur
- Gemessen wird eine Spannung von $U_M = 220\mu V$. Wie groß ist die Temperaturdifferenz $\vartheta_A \vartheta_B$?

, 2012, Elektrische Messtechnik, München: Hanse

Beispiel 2 Kapazitive Aufnehmer


- Plattenkondensator l = 10 mm; b = 1 mm; a = 1 mm; $\epsilon = \epsilon_0$ Nehmen Sie eine homogene Feldverteilung an und vernachlässigen Sie Streufelder.
- Leiten Sie die Kapazität des Plattenkondensators in Abhängigkeit von A, a und ε her. Skizzieren Sie den Verlauf der Kapazität über den Plattenabstand im Bereich $a=0,5\dots 1,5\ mm$.
 - Elektrisches Feld einer Punktladung $\vec{E} = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0 \cdot r^2} \vec{e_r}$
 - Elektrische Flussdichte einer Punktladung $\vec{D} = \frac{Q}{4 \cdot \pi \cdot r^2} \vec{e_r}$

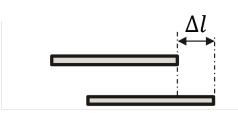


Beispiel 2 Kapazitive Aufnehmer

- Es folgt $\vec{D} = \varepsilon_0 \cdot \vec{E}$
- Bei einem Plattenkondensator

■ Verlauf der Kapazität im Bereich $a = 0.5 \dots 1.5 mm$

Beispiel 2 Kapazitive Aufnehmer


■ Berechnen Sie die Kapazität und die Empfindlichkeit in Abhängigkeit des Plattenabstands $a_0 + \Delta a$

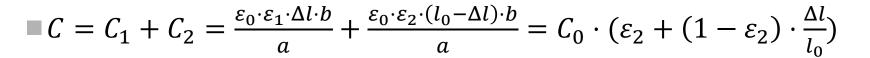
$$C = \frac{\varepsilon_0 \cdot A}{a} = \frac{\varepsilon_0 \cdot A}{a_0 + \Delta a} = \frac{\frac{\varepsilon_0 \cdot A}{a_0}}{1 + \frac{\Delta a}{a_0}} = C_0 \cdot \frac{a_0}{a_0 + \Delta a}$$

■
$$E = \frac{dC}{d\Delta a} = -C_0 \cdot \frac{a_0}{(a_0 + \Delta a)^2}$$
 (Hyperbel \rightarrow nichtlinear)

■ Berechnen Sie die Kapazität und die Empfindlichkeit in Abhängigkeit der Plattenüberlappung $l_0 + \Delta l$

■
$$E = \frac{dC}{d\Delta l} = -\frac{C_0}{l_0}$$
 (konstant → linear)

3asierend auf Schrüfer, E., et al., 2012, Elektrische Messtechnik, München: Hanser


Beispiel 2 Kapazitive Aufnehmer

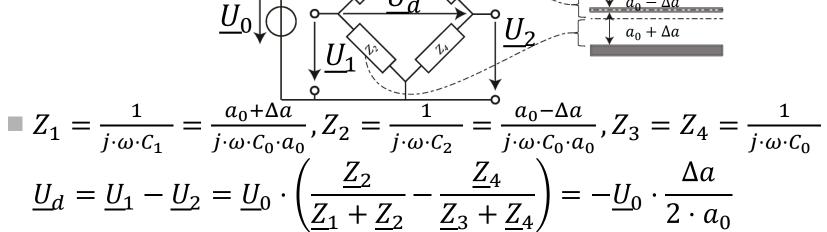
■ Berechnen Sie die Kapazität und die Empfindlichkeit in Abhängigkeit der Position des Dielektrikums $l_0 + \Delta l$

$$\varepsilon_1 = \varepsilon_0$$
, $\varepsilon_2 = \varepsilon_0 \cdot 1000$

Ersatzschaltbild

$$C_1 + C_2$$

$$\blacksquare E = \frac{dC}{d\Delta l} = -C_0 \cdot \frac{\varepsilon_2 - 1}{l_0}$$
 (konstant \rightarrow linear)

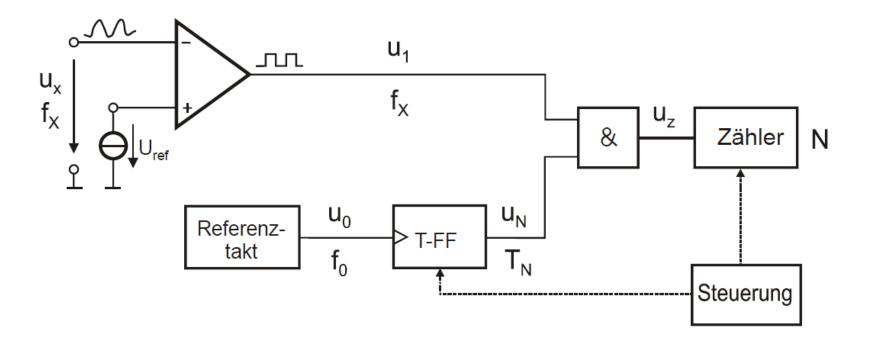


Beispiel 2 Kapazitive Aufnehmer

Wie kann die Nichtlinearität, die durch den veränderlichen Plattenabstand entsteht, unterdrückt werden? Berechnen Sie dafür die Abhängigkeit der Ausgangsspannung vom Plattenabstand und die Empfindlichkeit.

■ Halbbrücke

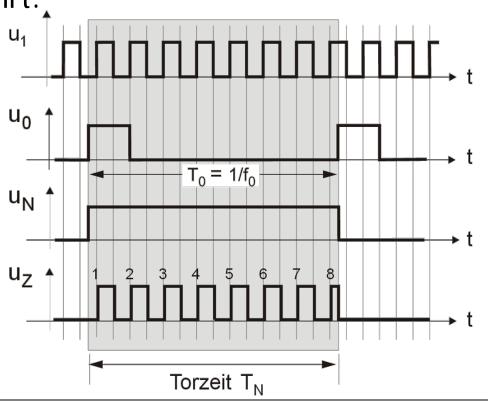
$$E = \frac{d\underline{U}_d}{d\Delta a} = -\frac{\underline{U}_0}{2 \cdot a_0}$$


Beispiel 3 Digitale Geschwindigkeitsmessung

- Ein inkrementeller Glasmaßstab mit Markierungen im Abstand von d bewegt sich mit konstanter Geschwindigkeit v. Eine optische Abtastung liefert Impulse $u_x(t)$, die nach einer analogen Komparatorstufe als Rechteckimpulse $u_1(t)$ mit den logischen Pegeln "0" und "1" bei unveränderter Frequenz f_x zur Verfügung stehen.
- Die Geschwindigkeit v des Glasstabes soll nach dem Prinzip der Frequenzmessung bestimmt und auf einem Zähler, der die positiven Flanken zählt, als Zählerstand N angezeigt werden.

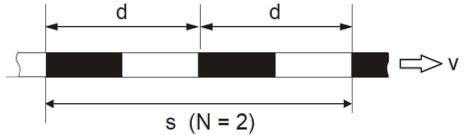
Basierend auf Schrüfer, E., et al., 2012, Elektrische Messtechnik, München: Hanser

Beispiel 3 Digitale Geschwindigkeitsmessung



Beispiel 3 Digitale Geschwindigkeitsmessung

Skizzieren Sie für eine konstante Geschwindigkeit v einen möglichen Spannungsverlauf von $u_0(t), u_N(t)$ und $u_z(t)$ für einen vollständigen Messzyklus, der zu einem Zählerstand von N=8 führt.



3asierend auf Schrüfer, E., et al., 2012, Elektrische Messtechnik, München: Hanser

Beispiel 3 Digitale Geschwindigkeitsmessung

■ Zeigen Sie durch Rechnung den Zusammenhang zwischen der Frequenz f_x , der Geschwindigkeit v und dem Markenabstand d.

 $\mathbf{x} = N \cdot d \dots \dot{\mathbf{Z}}$ urückgelegter Weg

$$\blacksquare f_{x} = \frac{N}{T_{N}}$$

s: zurückgelegter Weg

N: Zahl der im Abstand d abgetasteten Markierungen

Beispiel 3 Digitale Geschwindigkeitsmessung

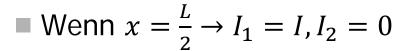
■ Berechnen Sie den Zählerstand N abhängig von der Frequenz f_x und der Referenzfrequenz f_0 .

$$\blacksquare T_N = \frac{1}{f_0} \to N = f_{\mathcal{X}} \cdot T_N = \frac{f_{\mathcal{X}}}{f_0}$$

■ Welcher Zusammenhang besteht schließlich zwischen der zu messenden Geschwindigkeit v und dem Zählerstand N abhängig von d und f_0 ?

$$N = \frac{f_x}{f_0} = \frac{v}{d \cdot f_0} \rightarrow v = f_0 \cdot d \cdot N$$

■ Wie ist f_0 zahlenmäßig in Hz zu dimensionieren, damit v direkt in mm/s angezeigt wird? ($d = 10\mu m$)

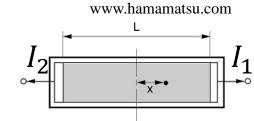


Elektrische Messtechnik, München: Hansei

Beispiel 4 Optischer Aufnehmer

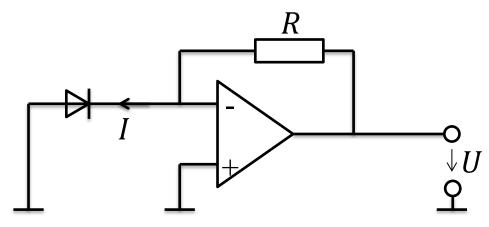
 Es soll mit einer lateralen Photodiode die Position eines Laserstrahls gemessen werden

Entwickeln Sie eine Formel zur Berechnung der Position x des Laserstrahls in Abhängigkeit der Ströme I₁ und I₂ und der Länge L



■ Wenn
$$x = -\frac{L}{2} \rightarrow I_1 = 0, I_2 = I$$

$$\blacksquare \to I_1(x) = I \cdot \left(\frac{1}{2} + \frac{x}{L}\right), I_2(x) = I \cdot \left(\frac{1}{2} - \frac{x}{L}\right), I = I_1 + I_2$$


$$\blacksquare \to \mathbf{X} = \mathbf{L} \cdot \frac{I_1 - I_2}{2 \cdot (I_1 + I_2)}$$

- Wie würde Sie den Ausgangsstrom in ein äquivalentes Spannungssignal wandeln? Der Messbereich des Spannungsmessgeräts beträgt 10V. Die Laserstrahlleistung beträgt 5 mW bei $\lambda = 920 nm$. Die restlichen Daten entnehmen Sie dem Datenblatt der Photodiode (S3931).
 - Transimpedanzverstärker

General ratings / Absolute maximum ratings

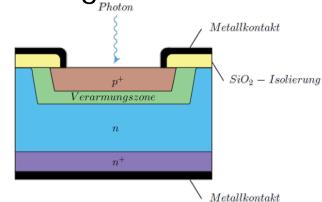
Type No.	Package	Window material *1	Active area	Absolute maximum ratings					
				Reverse voltage	Operating temperature	Storage temperature Tstg (°C)			
			SIZE	VR Max.	Topr				
			(mm)	(V)	(°C)				
S3931		R	1 × 6		-10 to +60	-20 to +80			
S3932	Ceramic	R	1 × 12	20	-10 10 +00				
S3270 *2		R (B)	1 × 37		-10 to +75]			

Electrical and optical characteristics (Typ. Ta=25 °C, unless otherwise noted)

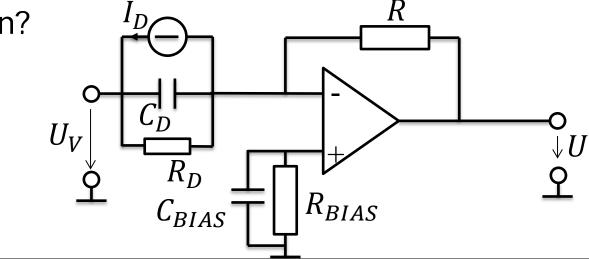
Electrical and optical characteristics					(1) P. 14 20 0, amous surer wise noted)										
Type No.	Spectral	Peak	Photo	Interelectrode			Idetection error *31		Saturation	l	lcoefficien		Rise time	Terminal capacitance	Position
	response	sensitivity	sensilivity	resistance			photocurrent *4		current		of	tr	Ct	resolution	
	range	wavelength		Rie		VR=	- =5 V	VR=5 V			In	VR=5 V	V₽=5 V	*5	
	λ	λр	λ=λр	Vb=0.1 V			light spot φ200 μm RL=1 kΩ		VR=5 V TCID		RL=1 kΩ	f=10 kHz			
						<u> </u>	' '					1-10 K112			
				Min.	Тур.	Max.	Тур.	Max.		Тур.	Max.				
	(nm)	(nm)	(A/W)	$(k\Omega)$	$(k\Omega)$	$(k\Omega)$	(µm)	(µm)	(µA)	(nA)	(nA)	(times/°C)	(µs)	(pF)	(µm)
S3931	320 to 1100	1100 920 0.	0.55	30	50 80	90	±30	±120	100	0.15	10	1.15	1.5	40	0.2
S3932			0.55	30		00	±60	±240		0.2	20		3.0	80	0.3
S3270	700 to 1100	960	0.55	10	15	20	±100	±400	300	0.5	20		1.0	100	2.8

www.hamamatsu.com

$$I = S \cdot P = 0.55 \frac{A}{W} \cdot 0.005 W = 2.75 mA$$

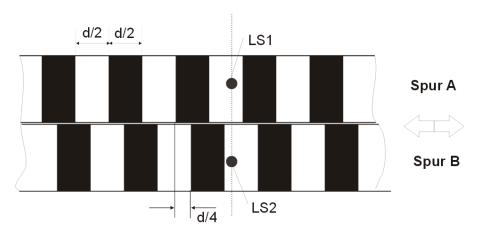

$$R = \frac{U}{I} = 3,64 \text{ k}\Omega$$

Diskutieren Sie wie die Empfindlichkeit der Messung erhöht werden kann: Erhöhung von R



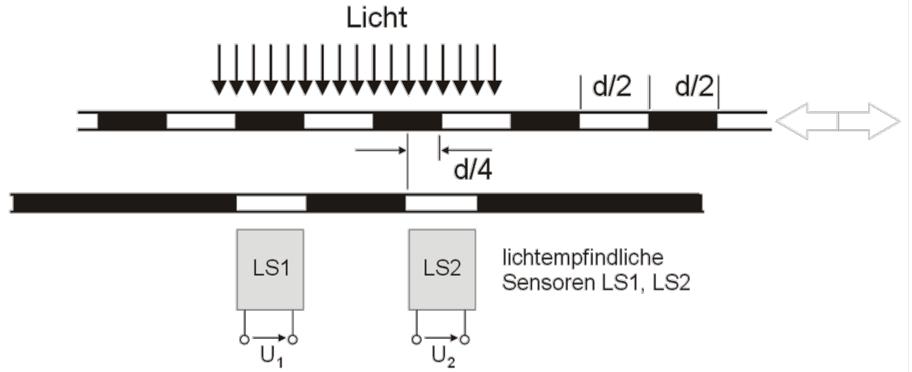
- Wie kann die Diodenkapazität verringert werden?
 - Vorspannen der Fotodiode → Verarmungszone wird größer

■ Wie kann der Einfluss der Biasströme des OPVs verringert werden? I_D



Beispiel 5 Inkrementaler Längengeber

- Gegeben ist ein Glasmaßstab mit den Spuren A und B; die Marken sind im Abstand d aufgebracht und werden von 2 Lichtschranken LS1 und LS2 abgetastet. Mit Hilfe der (nicht eingezeichneten) Spur B soll eine Richtungsauswertung ermöglicht werden.
- Vervollständigen Sie den Maßstab um die Spur B und geben Sie die wesentlichen geometrischen Daten an.



Beispiel 5 Inkrementaler Längengeber

Industrielle Längengeber besitzen nur 1 Spur, dafür aber eine entsprechend konstruierte Blende. Skizzieren und bemaßen Sie einen derartigen Aufbau.

