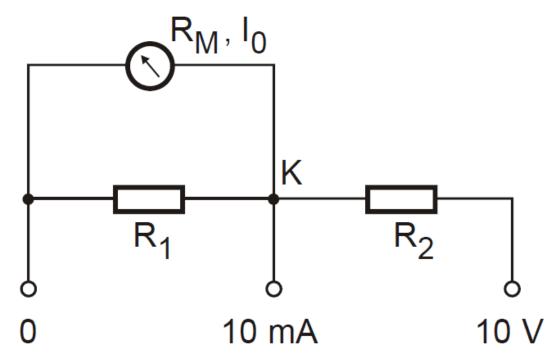


Univ.Prof. Dr.sc.techn. Georg Schitter schitter@acin.tuwien.ac.at

Ausgabe Rechenübung 1 Strom-/Spannungsmessung

Messtechnik, VU 376.045 (3 SWS, 4 ECTS) Sommersemester 2015

Allgemein

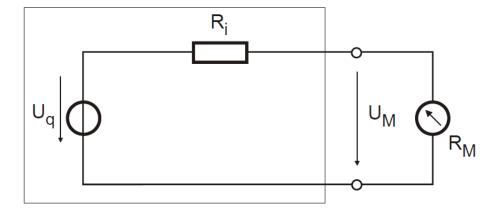

- Beispiele ab sofort im TISS verfügbar
- Diskussion der Beispiele am Mi 13.5.2015
- Ergebnisse (nicht der Rechenweg!) werden am 11.5.2015 im TISS veröffentlicht
- Die Bearbeitung der Beispiele erfolgt auf freiwilliger Basis. Im Hinblick auf den schriftlichen Teil der Prüfung empfehlen wir jedoch die Beispiele selbst zu lösen.

Bsp. 1 - Messbereichserweiterung (1/2)

Ein Drehspulinstrument mit dem Innenwiderstand R_M und Vollausschlag bei I₀ soll für die Messbereiche 10mA und 10V ausgelegt werden

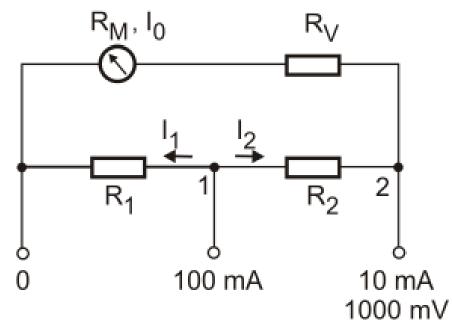
- \blacksquare R_M = 200 Ω
- $I_0 = 2 \text{ mA}$

Bsp. 1 - Messbereichserweiterung (2/2)


- Dimensionieren Sie R₁ allgemein und zahlenmäßig.
- Dimensionieren Sie R₂ allgemein und zahlenmäßig.
- Sie wollen nun im 10mA-Messbereich den Kurzschlussstrom I_b einer Stromquelle messen. Mit welchem Widerstand R_A wird diese Stromquelle durch das Messinstrument belastet?
- Sie wollen nun im 10V-Messbereich die Leelaufspannung U_b einer Spannungsquelle messen. Mit welchem Widerstand R_U wird diese Spannungsquelle durch das Messinstrument belastet?

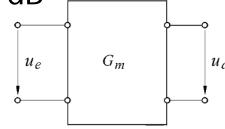
Bsp. 2 - Spannungsmessung

■ An den beiden Klemmen der Spannungsquelle wurde mit einem Spannungsmesser der Wert U_M gemessen.


- \blacksquare R_i = 1 k Ω , R_M = 15 k Ω und U_M =10,0 V
- Wie groß ist die Leerlaufspannung U_q der Quelle allgemein und zahlenmäßig?

Bsp. 3 - Messbereichserweiterung

Ein Drehspulinstrument (Innenwiderstand R_M, Vollausschlag bei I₀) soll für die im Bild eingezeichneten Messbereiche ausgelegt werden.


- \blacksquare R_M = 100 Ω
- $I_0 = 8 \text{ mA}$
- Berechnen Sie R_V , R_1 und R_2 .

Bsp. 4 - Zeitverhalten

- Ein Messgerät mit dem Frequenzgang G_m(jω) weist die Charakteristik eines Verzögerungsgliedes 1. Ordnung auf.
- Eingangswiderstand $R=500 \Omega$
- Eingangskapazität C=100 pF
- Die Gleichspannungsverstärkung beträgt 20 dB
- $= |G_m(j2\pi \cdot 400 \text{ kHz})| = -20 \text{dB}$

- Berechnen Sie die Grenzfrequenz f_a des Messgeräts.
- In welchem Frequenzbereich ist der absolute Phasenfehler des Messgeräts ≥10°?

Hinweise

- Diskussion der Beispiele am Mi 13.5.2015
- Ergebnisse (nicht der Rechenweg!) werden am 11.5.2015 im TISS veröffentlicht
- Versuchen Sie im Hinblick auf den schriftlichen Teil der Prüfung die Aufgabenstellungen selbst zu lösen.

Viel Erfolg!

