389.166 SP1 - Exercise 6 - Approximations II. 18. December 2014

Guidelines
e Write your name and matriculation number on each sheet of paper.
e Only clearly readable exercise-elaborations are evaluated.
e Results have to be provided together with an evident way of calculation.

e Keep textual answers short and concise. Lengthy or vague statements won’t
gain points.

Exercise 6.1 (0.5 points)
Consider the plane A, defined as

A:ry=aa+ pb
with
1 0
a = O ) l_) = -1
1 —1
and a vector =
1
z= 1|1
0
1. (a) What is the condition for the minimal error ¢ = x —  with £ € A

(minimal in the sense of the 12-norm)?

(b) Define a system of equations to determine o and ( that correspond to

this minimal error. How many equations and how many unknows are
there?

Now rewrite the definition of the plane A in matrix-vector form:

with
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2. (a) Reformulate ¢ = z — Z in matrix-vector notation and find A for the
given values.

(b) Find a matrix C' so that £ = C'z and express it in terms of A. Calculate
2 for the given values.

(c¢) Find a matrix D so that e = Dz and express it in terms of A. Calculate
e for the given values.
3. (a) Show that C is a projection matrix.
(b) Show that D is a projection matrix.

(c) Show that C' and D perform projections on orthogonal subspaces.

Terms: Pseudo inverse, projection.
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Exercise 6.2 (0.5 points)
Reconsider the example from Exercise 3 where we had a phase vector

_ | exp(jor)
v= [exp(]gbg) :| ) ¢17¢2 e R

and a vector
a
p= [ b}’ a,b e C.

1. ”Given an achievable point ¢ and a fixed v, how do you find p?”
Formulate this problem in terms of a matrix-vector multiplication by con-
sidering real and imaginary parts separately:

CR
QRI = |: cr :| = VBR]?

where cp = Re{c}, ¢; = Im{c}. Determine V' and p, and find the least
squares solution for p . (attention: do we need the left or right pseudoin-
verse of V7).

Hint: use Fuler’s formula and then separate real and imaginary part.
What can you say about the so obtained solution for p?

2. Considering the phase vector v(®) € C?, @ € R?, show on an example that:

e Two linearly independent vectors @, and ®, do not necessarily lead to
linearly independent phase vectors v(®,) and v(®,).

e Two linearly dependent vectors ®, and ®, do not necessarily lead to
linearly dependent phase vectors v(®,) and v(P;).

Let us increase the problem dimension to m, ie., p = (P15 pm)T and v =
[exp(j1),-,exp(jdm)] "

3. Given a vector p € C™, find the phase vector v € C™ that approximates it
in the least squares sense (minimizes error e = p — v).
Hint: illustrate the vectors in the complex plane with m = 1.

Terms: inner product, least squares, minimum norm solution, Euler’s formula,
linear dependency.
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Exercise 6.3 (0.5 points)
1. Show that the nullspace of an operator A is a linear vector space.

2. Prove the remaining parts of Theorem 4.7 in the lecture notes.

3. Consider the space of polynomials of degree < n: P, = {co + 1z + ... +
cp,x™}. Find the range and null space of the differentiation operator D :
D(p) = &p(x), p(z) € P,. State the dimension of these two spaces. Do
the same for the integration operator T': T'(p) = [ p(t)dt.

4. ) Consider a linear map 7' : V' — W between two vector spaces.
a) Suppose that N(T') = {0} and that (v,,--- ,v,) are linearly indepen-
dent in V. Show that (Tv,,--- ,Tv,) is linearly independent in W.

b) Suppose V = R? and W = R*. If there are at least two independent
vectors in N(T'), what are the possible values for the dimension of
R(T)?

Terms: Pseudo inverse, projection.
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MATLAB-Exercise 6.1 (1 point)

In this Matlab exercise we investigate the Haar-wavelet transform. We will see
that most of the orthogonal expansion coefficients are close to or equal to zero
and that an image can therefore be effectively described by a few coefficients
only. This enables a lossless compressed description of the image, as well as lossy
compression by means of approximating the image with the largest coefficients
only.

Let us assume a vector x of even length N. The one-dimensional Haar-wavelet
transform z, of the vector x is calculated with the following two operations:

e The first % coefficients (low frequency coefficients) are computed as the nor-
malized average between each odd entry of the vector x and the consecutive
even entry:

N

(1)

&t(z) =

Sl -

e The last % coefficients (high frequency coefficients) are given by the nor-
malized differences between consecutive vector entries:

N o 1 , : : N
gt(g—i-z):E(g@z—l)—g(?&)), zzl,...,; (2)

1. Assume N = 4 and rewrite these operations as inner products with appro-
priate basis vectors. Verify that the so obtained vectors form an orthonor-
mal basis for the space.

2. How is this transformation inverted?

For two-dimensional pictures X, the tranformation is very similar:

e First the 1D wavelet transform is applied to each column of the picture, to
obtain the vertical transform Xt(v).

o Afterwards, each row of the vertical transform Xt(v) is additionally hori-
zontally 1D wavelet transformed (the vertical /horizontal order can also be

reversed). Graphically this can be represented as shown in [Figure 6.1

3. Implement functions my_haar and my_inv_haar in Matlab that realize the
Haar-wavelet transform and its inverse. Apply the transformation and its

inverse to the picture pic that can be found in the Matlab file picture_small.mat

on the course homepage (see current exercise). Verify that, in accordance
with Parseval’s theorem, the energy of the image and its transform is the
samne.
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Figure 6.1: Graphical represenation of the Haar-wavelet transform

4. Plot the original image, its transform and the back-transformed image,
using the function image and the colormap defined in colorm in the file
picture_small.mat. (Be careful to renormalize your images such that the
color dynamic range of the colormap is fully utilized).

5. Furthermore, sort the absolute values of all coefficients of the wavelet trans-
form in increasing order and plot them. How many coefficients are equal
to zero?

To further reduce the number of non-zero transform coefficients, this wavelet
transformation can be applied recursively. This is achieved by applying the same
transformation to the low-frequency coefficients (the 4,4+, part in in
a recursive way, thereby reducing the size of this part in each step, until only one
low-frequency coefficient is left.

6. Implement this recursive transformation. How often can the recursion be
applied to the image provided in pic?

7. Again plot the sorted absolute values of the transform coefficients, obtained
after the maximum number of possible recursions. How many coefficients
are now equal to zero?

8. Implement the inverse of the recursive transformation as well (this is just
the inverse transformation recursively applied to the corresponding part of
the wavelet coefficients). Compute the error energy between the original
and the back-transformed image. Why is it not exactly equal to zero?

As you see from the absolute values of the wavelet-transform coefficients, most
energy is contained in only a few coefficients. This suggests to approximate,/-
compress the image by discarding (setting equal to zero) the coefficients that are
close to zero.

9. Now we approximate our image by keeping only as much of the largest
transform coefficients as needed to conserve 90%, 99% and 99.9% of the
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total image energy. How many coefficients do you need to retain in order
to obtain these values? How does the number of recursions of the trans-
formation influence this value? Plot the number of retained coefficients
versus the recursion order in a semi-logarithmic plot (semilogy) for the
three percentages given above. To what SNRs (total image energy divided
by approximation-error energy) do these energy percentages correspond to?

10. Plot the approximated pictures for 90% and 99.9% of conserved energy and
the two recursion orders 1 and 8. Which approximations do you personally
prefer? Is the SNR therefore an appropriate measure of the quality of the
approximation?
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