
Dirk Praetorius, Sommersemester 2014
Thomas Führer 31.03.2014

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 5

Aufgabe 5.1. Write a function minmaxmean which computes and returns the minimum, maximum, and
the mean value 1

n

∑n
j=1 of a given vector x ∈ Rn. Additionally, write a main program that reads in

a vector x ∈ Rn and prints out the minimum, maximum, and mean value of it. The length n of the
vector should be constant in the main program, but the function minmaxmean should be programmed for
arbitrary lengths n.

Aufgabe 5.2. Write a function lcm that computes the least common multiple of two given natural
numbers a, b ∈ N. For the solution, you can either compute the prim factors of both numbers or use the
relation ab = gcd(a, b) · lcm(a, b), where gcd(a, b) denotes the greatest common divisor.

Aufgabe 5.3. Write a function exponential which approximates the value exp(x) by the partial sum

SN (x) :=

N∑
j=0

xj

j!
,

where N ∈ N satisfies the condition ∣∣∣ xN+1

(N + 1)!

∣∣∣ ≤ ∣∣∣xN

N !

∣∣∣ ≤ ε

for a given tolerance ε > 0. The computation of the summands xj/j! should be realized efficiently.
Compare the absolute errors |SN (x)− exp(x)| for different values of ε and evaluation points x ∈ R.

Aufgabe 5.4. The quotient sequence (an+1/an)n∈N corresponding to the Fibonnaci-sequence (an)n∈N,

a0 := 1, a1 := 1, an := an−1 + an−2 für n ≥ 2,

converges towards the golden ratio (1 +
√

5)/2. In particular, the difference sequence

bn :=
an+1

an
− an

an−1

converges towards 0. Write a function cauchy that returns, for given k ∈ N, the smallest n ∈ N such
that |bn| ≤ 1/k. Moreover, write a main program that reads in k ∈ N and prints out the index n ∈ N.

Aufgabe 5.5. The Bubble-Sort algorithm is an inefficient, but short sorting algorithm which works as
follows: You run through the entries of a given vector x ∈ Rn several times. In every run, each entry
xj of is compared to its successor xj+1 and if xj > xj+1, the two entries xj ,xj+1 are swapped. After
the first complete run through the vector, one knows that (at least) the last element is sorted correctly,
i.e. the last element xn is the maximum of the vector. Thus, in the next run one only has to go up-to
the last-but-one entry of the vector. How many loops do you need for this algorithm? Write a function
bubblesort which sorts a given vector x ∈ Rn with this algorithm. Additionally, write a main program
that reads in x ∈ Rn and sorts it. The length n should be constant. However, your function bubblesort

should be programmed for aribtrary lengths n.

Aufgabe 5.6. Let the two series

aN :=

N∑
n=0

1

(n + 1)2
und bM := a2M =

M∑
m=0

m∑
k=0

1

(k + 1)2(m− k + 1)2

be given. Write a program that measures the time used for the computation of aN resp. bM for different
values of N resp. M . Print out the results tabularly. Do the results meet your expectations? Hint: Think
of the computational complexity (Aufwand) for the computation of aN resp. bM .

Aufgabe 5.7. The function squareVector should square all entries of a given vector x ∈ Rn, i.e., the
input (−1, 2, 0) should be turned into (1, 4, 0). The input vector should be passed as a pointer.

#include <stdio.h>

int squareVec(double vec, int n) {

int j=0;

for(j=1, j<dim; --j) {

*vec[j] = &vec[j] * &vec[j];

}

return vec;

}

main() {

double vec[3] = {-1.0,2.0,0.0};

int j=0;

squareVec(vec,3);

for(j=0; j<3; ++j) {

printf("vec[%d] = %f ",j,vec[j]);

}

printf("\n");

}

Change only the function squareVec, such that the main programm prints out the correct result. How
many errors do you find? What is the computational complexity (Aufwand) of squareVec?

Aufgabe 5.8. Which types of comments do you know? What is the output of the following code and
why?

#include <stdio.h>

/*int f(double x) {

return (int) x;

}

*/

main() {

int x = 4;

int y = 2*x*/* f(0.1)+3

*/1/4;

// y = 1;

printf("y = %d\n",y); // Print out result

}

