
Dirk Praetorius, Sommersemester 2014
Thomas Führer 29.04.2014

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 7

Aufgabe 7.1. Write a function doubleData that computes for a given number x ∈ R and a mantissa
with length M ∈ N, the

• sign σ ∈ {−1,+1},

• digits aj ∈ {0, 1} for j = 1, . . . ,M ,

• exponent e ∈ Z,

such that x ≈ (
∑M

j=1 aj2
−j)2e. Have a look at the proof in the lecture notes. The function should return

σ, e, and the vector (aj)
M
j=1 with call-by-reference (pointer).

Aufgabe 7.2. What is the system of floating-point numbers? Of which parts does a floating-point
number consist? How can you determine its value thereof? What is the meaning of Inf, -Inf, and NaN?
What is the machine accuracy eps? What is a normalized floating-point number? What is a first implicit
bit?

Aufgabe 7.3. Write a program that reads in a word (string) und checks if this word is a palindrome.
A palindrome is a word whose meaning is the same either in forward or backward direction, e.g., radar,
level, madam.

Aufgabe 7.4. Write a function void unique(double * x, int n) which reads in a vector x ∈ Rn,
sorts this vector in ascending order, eliminates entries that appear more than once, and returns the
shortened vector. For instance, the vector x = (4, 3, 5, 1, 4, 3, 4) ∈ R7 should be replaced by the vector
x = (1, 3, 4, 5) ∈ R4. Write a main program that reads in the length n ∈ N and the vector x ∈ Rn, and
prints out the shortened vector. Work with dynamically allocated memory.

Aufgabe 7.5. Write a library for columnwise(!) stored m×n-matrices. Implement the following functions

• double* mallocmatrix(int m, int n)

Allocates memory for a columnwise stored m× n matrix.

• double* freematrix(double* matrix)

Frees memory of a matrix.

• double* reallocmatrix(double* matrix, int m, int n, int mNew, int nNew)

Reallocates memory and initializes new entries.

Store the signatures of the functions in the header file dynamicmatrix.h. Write also appropriate com-
ments to this functions in the header file. The file dynamicmatrix.c should contain the implementations
of the above functions.

Aufgabe 7.6. Write a structure (data-type) polynomial for the storage of polynomials that are repre-
sented as p(x) =

∑n
j=0 ajx

j . Note that you have to store the degree n ∈ N0 as well as the coefficient

vector (a0, . . . , an) ∈ Rn+1. Write all necessary functions to work with this structure (newPoly, delPoly,
getPolyDegree, getPolyCoefficient, setPolyCoefficient). Moreover, write a function evalPoly

that evaluates a polynomal at a given point x ∈ R.

Aufgabe 7.7. The sum r = p + q of two polynomials p, q is again a polynomial. Write a function
addPolynomials that computes the sum r. For the storage of polynomials use the structure from Exersi-
ce 7.6. Additionally, write a main program that reads in two polynomials and computes the sum thereof.



Aufgabe 7.8. The k-th derivative p(k) of a polynomial p is again a polynomial. Write a function
differentiatePolynomial that computes the k-th derivative of a polynomial. For the storage of poly-
nomials use the structure from Exersice 7.6. Additionally, write a main program that reads in p and k,
and prints out p(k).


