
Dirk Praetorius, Sommersemester 2014
Thomas Führer 12.05.2014

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 9

Aufgabe 9.1. Write a class Name which contains two members, firstName and surname of type string.
Implement the set-method setName that has one string variable as input parameter, and splits the input in
first name and surname automatically. Note that the input can contain multiple first names. Furthermore,
write a method printName which prints out the whole name on the monitor. In case of multiple first
names, the output should be shortened as follows: The name Max Maxi Mustermann should be printed
out as Max M. Mustermann.

Aufgabe 9.2. Write a class Hangman that contains the methods guessChar, solve, newString. The
class should store a string of length n which has to be guessed. The method guessChar allows the user
to guess a single character in the string. In case that the string contains the character, the method
guessChar should return the index resp. the indices of the the character in the string. In case that the
string does not contain the character, an appropriate message should be printed out. The user loses, if
he is not able to find the correct string after 8 tries. Additionally, write a method newString to start the
game with a new word, and a method solve which allows to solve it. Moreover, write a main program
to check if your implementation is correct.

Aufgabe 9.3. Write a class Deposit with members accountNumber, assets, and ratePerCent. Mo-
reover, implement set and get methods for the members accountNumber, assets. To change the assets,
write a method drawMoney and placeOnDeposit. Note that with this deposit you are not allowed to
draw more money than is given, i.e., the member assets must be positive. The rate per cent as well as
the account number must also be positive. Finally, implement the method calculateAssets.

Aufgabe 9.4. Write a class Client that stores a list of deposits. Use the container vector! Furthermore,
the class should contain an object of the class Name from Exercise 9.1. Implement methods for adding
and deleting deposits. Moreover, write a function that computes the assets of all deposits. Think of other
useful functions.

Aufgabe 9.5. Write a class Stopwatch that simulates a stopwatch. The stopwatch consists of two but-
tons: If the first button is pressed, then the time measurement starts. If the button is pressed again, then
the time measurement stops. The second button is used to reset the time to zero. To realize this situation,
implement the methods pushButtonStartStop (first button) and pushButtonReset. Implement another
method that prints out the time formatted in the style hh:mm:ss.xx, e.g., if the measured time is two
minutes, then the output should be 00:02:00.00.
Hint: Use the data-type clock t and the function clock() from the library time.h. It makes sense to
use a variable isRunning of type bool. If the first button is pressed, then this variable is either set to
true or false.

Aufgabe 9.6. Write a class University. This class should contain the members numStudents, city,
and name as well as the methods graduate, and newStudent. If the method graduate is called, the
number of students gets decreased by one, whereas if newStudent is called, the number of students
increases by one. All data-members should be declared as private! Therefore, you have to implement
get and set methods.

Aufgabe 9.7. Implement the get and set methods of the class

class Fraction {

long numerator;

unsigned long denominator;

public:



Fraction();

Fraction(long numerator, unsigned long denominator);

setNumerator(long z);

setDenominator(unsigned long n);

double getValue();

};

The method getValue should return the floating-point value of the fraction. Take care of the fact, that
the denominator has to be nonzero. Additionally, implement the constructor Fraction() that sets the
numerator to 0 and the denominator to 1.

Aufgabe 9.8. Extend the class Fraction by the public method void reduce() that determines the
reduced form of the fraction numerator/denominator. Use the euclidean division algorithm. Moreover,
implement the method setValue(string value) that converts an arbitrary number, given as a string,
into a fraction. For the implementation you can proceed as follows: First, find the decimal-point in the
string and count the number of positions after the decimal-point. Then, erase the decimal-point from the
string. The string now represents a natural number and can be converted into an int variable by use of
the function atoi. This number is used for the numerator. Then, the denominator is set to 10p, where
p ∈ N is the number of positions after the decimal-point. Finally, call the method reduce().
Hint: The method find of the class string allows you to find a specific character in the string, e.g.,
int pos = value.find(’.’) returns the position of the decimal-point in the string value. The call
value.erase(pos,k), erases k characters after the position pos in the string value. The function atoi

from the standard library cstdlib converts a given string (in C-style) to an int variable. To get the
string as char *, you can use the method c str() of class string.


