Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 11

Note: For this series you need the matrix class from the last exercise sheet.
Aufgabe 11.1. Overload the operator + for the class Matrix from the last exercise sheet. Moreover, test your implementation.

Aufgabe 11.2. Overload the operator * (matrix-matrix multiplication) for the class Matrix from the last exercise sheet. Moreover, test your implementation.

Aufgabe 11.3. Overload the operator + for the class MyVector from the lecture notes. Moreover, test your implementation.

Aufgabe 11.4. Overload the operator $*$ for the class MyVector from the lecture notes. We define the multiplication of two vectors $x, y \in \mathbb{R}^{n}$ component-wise, i.e. the j-th entry of the product $z=x * y$ is given by $z_{j}=x_{j} y_{j}$. Moreover, test your implementation.

Aufgabe 11.5. Write a class Alcohol for the storage of different alcoholic drinks. The class should contain the following members: name, alcoholic strength percent, price in $€$. Moreover, implement an appropriate constructor and overload operator<, that compares two objects of the class with respect to the ratio $\frac{\text { Vol. } \%}{€}$. Additionally, implement the methods getName(), getPrice(), and getVolPercent(). Hint: In general, the operator < is overloaded by the syntax

```
bool operator<(const type& lhs, const type& rhs);
```

Here, type is an arbitrary datatype. In our case it is Alcohol.
Aufgabe 11.6. Overload the function print such that

```
void print(vector<double> &d);
void print(vector<Complex> &c);
```

either prints out a vector with double entries or a vector with Complex entries. Test your implementations.
Aufgabe 11.7. Overload the function norm, such that

```
double norm(Matrix& A);
double norm(vector<double>& v);
```

either computes and returns the Frobenius norm $\sqrt{\sum_{j=1}^{m} \sum_{k=1}^{m} A_{j k}^{2}}$ of a $m \times n$-matrix A or the ℓ_{2}-norm $\sqrt{\sum_{j=1}^{n} v_{j}^{2}}$ of a vector $v \in \mathbb{R}^{n}$. Test your implementations. Why is it a good idea to use Call by Reference for the input parameters?

Aufgabe 11.8. Write two functions
double prod(vector<double> \&a, double c);
double prod(vector<double> \&a, vector<double> \&b, double c);
which compute and return either $c \prod_{j=1}^{n} a_{j}^{2}$ or $c \prod_{j=1}^{n} a_{j} b_{j}$. Test your implementations.

