
Dirk Praetorius, Sommersemester 2014
Thomas Führer 06.06.2014

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 12

For the first two exercises inform yourself in the net about standard libraries. Use one of the following
sites:

http://www.cppreference.com or http://www.cplusplus.com.

The last exercise deals with templates, which will be discussed in the last lecture. You can also have a
look at the slides from the summer term 2013.

Aufgabe 12.1. A pair is a C++-datatype that contains two (possible) different types. A pair of double-
values is denoted as pair<double,double>. The code pair<double,double>(5.,3.) creates a pair with
the two double-values 5., 3.. You have to include the header file map to use pairs.
Write a function minmax that takes a list of floating-point numbers as input, and returns the minimum
and maximum of this list as a pair, i.e. the return data-type of the function should be a pair. Test your
implementation properly.
Hint: You can access the first value of a pair with .first and the second one with .second. For example:

pair<int, double> x(5, 17.4);

cout << x.first << ", " << x.second << endl; // Output: 5, 17.4

Aufgabe 12.2. Write a function sortfile that reads in a file (row-wise) into a vector. This vector
should be sorted in lexicographical order and then be printed out. Create a proper text file to test your
program!
Hint: The following code reads in a file (row-wise):

fstream file("file.txt");

while (file.good()) {

string row;

getline(file, row);

}

Solve the exercise by adapting this code. You have to include the header file fstream!
Hint: The relation operator < for string corresponds to the lexicographical order. If you want, you can
use the function sort from the standard library.

Aufgabe 12.3. Implement a class Person which contains the members name and address. Write
set/get functions for these. Derive a class Student from Person, that contains the additional data-fields
matriculationNumber and study. Derive another class Worker that contains the additional data-fields
salary and work. Think about which members are private, public, or protected.

Aufgabe 12.4. Implement the method void print() in the basis class Person from exercise 12.3. The
method should print out the name and address of a person. Redefine this function in the derived classes
Student and Worker (the additional data-fields should also be printed out). Moreover, write a main
programm for testing the print-methods of the different classes.

Aufgabe 12.5. Consider the class Matrix and the derived class SquareMatrix from the lecture. Im-
plement the method computeLU, that computes the LU-factorization, for the class SquareMatrix. The
return value (a matrix R ∈ Rn×n is again of the type SquareMatrix, where the triangular matrices L
and U should be stored in R. The diagonal of L does not need to be stored. Why?

http://www.cppreference.com
http://www.cplusplus.com


Not every matrix A ∈ Rn×n has a normalized LU-factorization A = LU , i.e.,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


1 0 . . . 0

`21 1
. . .

...
...

. . .
. . . 0

`n1 . . . `n,n−1 1




u11 u12 . . . u1n

0 u22
. . .

...
...

. . .
. . . un−1,n

0 . . . 0 unn

 .

In the case there exists such a factorization, it holds

uik = aik −
i−1∑
j=1

`ijujk for i = 1, . . . , n, k = i, . . . , n,

`ki =
1

uii

(
aki −

i−1∑
j=1

`kjuji

)
for i = 1, . . . , n, k = i + 1, . . . , n,

`ii = 1 for i = 1, . . . , n,

which can be verified by using the formula for the matrix-matrix multiplication.

Aufgabe 12.6. What is the computational cost of the LU-factorization from exercise 12.5? Write down
your results in the O-notation.

Aufgabe 12.7. The determinant of a matrix A ∈ Rn×n can be computed with the normalized LU-
factorization from exercise 12.5. It holds det(A) = det(L) det(U) = det(U) =

∏n
j=1 ujj . Extend the class

SquareMatrix by the method detLU, that computes and returns the determinant. The matrix A should
not be overwritten.

Aufgabe 12.8. Write a template function minsort(std::vector<T> v) that takes a vector of T-objects
as input, sorts the vector in ascending order and returns it. You can assume that the operator < for the
data-type (class) T is defined. The sorting method should work as in the minsort function defined in the
lecture notes, see slide 75. Test your implementation with different(!) data-types.


